How macrophage heterogeneity affects tuberculosis disease and therapy

Brites, D. & Gagneux, S. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol. Rev. 264, 6–24 (2015).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Comas, I. et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet. 45, 1176–1182 (2013).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

Article  PubMed  CAS  Google Scholar 

Yoshida, M. et al. Complete genome sequence of Mycobacterium marinum ATCC 927(T), obtained using nanopore and illumina sequencing technologies. Genome Announc. 6, e00397–18 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Mohan, A., Padiadpu, J., Baloni, P. & Chandra, N. Complete genome sequences of a Mycobacterium smegmatis laboratory strain (MC2 155) and isoniazid-resistant (4XR1/R2) mutant strains. Genome Announc. 3, e01520–14 (2015).

PubMed  PubMed Central  Google Scholar 

World Health Organization. Global Tuberculosis Report 2023 (2023).

Dartois, V. A. & Rubin, E. J. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat. Rev. Microbiol. 20, 685–701 (2022).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Molhave, M. & Wejse, C. Historical review of studies on the effect of treating latent tuberculosis. Int. J. Infect. Dis. 92S, S31–S36 (2020).

Article  PubMed  CAS  Google Scholar 

Farhat, M. et al. Drug-resistant tuberculosis: a persistent global health concern. Nat. Rev. Microbiol. 22, 617–635 (2024).

Article  PubMed  CAS  Google Scholar 

Liebenberg, D., Gordhan, B. G. & Kana, B. D. Drug resistant tuberculosis: implications for transmission, diagnosis, and disease management. Front. Cell Infect. Microbiol. 12, 943545 (2022).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Salari, N. et al. Global prevalence of drug-resistant tuberculosis: a systematic review and meta-analysis. Infect. Dis. Poverty 12, 57 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Setiabudiawan, T. P. et al. Protection against tuberculosis by Bacillus Calmette-Guérin (BCG) vaccination: a historical perspective. Med. 3, 6–24 (2022).

Article  PubMed  CAS  Google Scholar 

Andersen, P. & Doherty, T. M. The success and failure of BCG — implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 3, 656–662 (2005).

Article  PubMed  CAS  Google Scholar 

World Health, O. BCG vaccine: WHO position paper, February 2018 — recommendations. Vaccine 36, 3408–3410 (2018).

Article  Google Scholar 

Ayers, T. et al. Comparison of tuberculin skin testing and interferon-γ release assays in predicting tuberculosis disease. JAMA Netw. Open. 7, e244769 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Peetluk, L. S. et al. Systematic review of prediction models for pulmonary tuberculosis treatment outcomes in adults. BMJ Open. 11, e044687 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Saunders, M. J. et al. A score to predict and stratify risk of tuberculosis in adult contacts of tuberculosis index cases: a prospective derivation and external validation cohort study. Lancet Infect. Dis. 17, 1190–1199 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Cohen, S. B. et al. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe 24, 439–446 (2018).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bloom, B. R. A half-century of research on tuberculosis: successes and challenges. J. Exp. Med. 220, e20230859 (2023).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cadena, A. M., Fortune, S. M. & Flynn, J. L. Heterogeneity in tuberculosis. Nat. Rev. Immunol. 17, 691–702 (2017).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Urbanowski, M. E., Ordonez, A. A., Ruiz-Bedoya, C. A., Jain, S. K. & Bishai, W. R. Cavitary tuberculosis: the gateway of disease transmission. Lancet Infect. Dis. 20, e117–e128 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cohen, S. B., Gern, B. H. & Urdahl, K. B. The tuberculous granuloma and preexisting immunity. Annu. Rev. Immunol. 40, 589–614 (2022).

Article  PubMed  CAS  Google Scholar 

Hunter, R. & Actor, J. The pathogenesis of post-primary tuberculosis. A game changer for vaccine development. Tuberculosis 116S, S114–S117 (2019).

Article  PubMed  Google Scholar 

Hunter, R. L. The pathogenesis of tuberculosis: the early infiltrate of post-primary (adult pulmonary) tuberculosis: a distinct disease entity. Front. Immunol. 9, 2108 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Wells, G. et al. Micro-computed tomography analysis of the human tuberculous lung reveals remarkable heterogeneity in three-dimensional granuloma morphology. Am. J. Respir. Crit. Care Med. 204, 583–595 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Houben, R. M. & Dodd, P. J. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 13, e1002152 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Behr, M. A., Edelstein, P. H. & Ramakrishnan, L. Rethinking the burden of latent tuberculosis to reprioritize research. Nat. Microbiol. 9, 1157–1158 (2024).

Article  PubMed  CAS  Google Scholar 

van Furth, R. et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 46, 845–852 (1972).

PubMed  PubMed Central  Google Scholar 

Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964 (2019).

Article  PubMed  CAS  Google Scholar 

Gibbings, S. L. et al. Three unique interstitial macrophages in the murine lung at steady state. Am. J. Respir. Cell Mol. Biol. 57, 66–76 (2017).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mass, E., Nimmerjahn, F., Kierdorf, K. & Schlitzer, A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat. Rev. Immunol. 23, 563–579 (2023).

Article  PubMed  CAS  Google Scholar 

Schyns, J. et al. Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung. Nat. Commun. 10, 3964 (2019).

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif