Neuroinflammation in Alzheimer disease

Gotz, J., Bodea, L. G. & Goedert, M. Rodent models for Alzheimer disease. Nat. Rev. Neurosci. 19, 583–598 (2018).

Article  CAS  PubMed  Google Scholar 

Sasaguri, H. et al. Recent advances in the modeling of Alzheimer’s disease. Front. Neurosci. 16, 807473 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Sierksma, A., Escott-Price, V. & De Strooper, B. Translating genetic risk of Alzheimer’s disease into mechanistic insight and drug targets. Science 370, 61–66 (2020).

Article  CAS  PubMed  Google Scholar 

Alzheimer, A. Uber eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiatr. 64, 146–148 (1907).

Google Scholar 

Redlich, E. Uber miliare Sklerose der hirnrinde bei seniler Atrophie. Jahrb. Psychiatry Neurol. 17, 208–216 (1898).

Google Scholar 

Eikelenboom, P. & Stam, F. C. Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study. Acta Neuropathol. 57, 239–242 (1982).

Article  CAS  PubMed  Google Scholar 

Griffin, W. S., Sheng, J. G., Roberts, G. W. & Mrak, R. E. Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J. Neuropathol. Exp. Neurol. 54, 276–281 (1995).

Article  CAS  PubMed  Google Scholar 

Lagomarsino, V. N. et al. Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors. Neuron 109, 3402–3420.e9 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGeer, P. L., Itagaki, S., Tago, H. & McGeer, E. G. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci. Lett. 79, 195–200 (1987).

Article  CAS  PubMed  Google Scholar 

Sheng, J. G., Mrak, R. E. & Griffin, W. S. Glial-neuronal interactions in Alzheimer disease: progressive association of IL-1alpha+ microglia and S100beta+ astrocytes with neurofibrillary tangle stages. J. Neuropathol. Exp. Neurol. 56, 285–290 (1997).

Article  CAS  PubMed  Google Scholar 

McGeer, P. L., Akiyama, H., Itagaki, S. & McGeer, E. G. Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci. Lett. 107, 341–346 (1989).

Article  CAS  PubMed  Google Scholar 

Rogers, J., Luber-Narod, J., Styren, S. D. & Civin, W. H. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol. Aging 9, 339–349 (1988).

Article  CAS  PubMed  Google Scholar 

Styren, S. D., Civin, W. H. & Rogers, J. Molecular, cellular, and pathologic characterization of HLA-DR immunoreactivity in normal elderly and Alzheimer’s disease brain. Exp. Neurol. 110, 93–104 (1990).

Article  CAS  PubMed  Google Scholar 

Griffin, W. S. et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl Acad. Sci. USA 86, 7611–7615 (1989).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heneka, M. T., McManus, R. M. & Latz, E. Inflammasome signalling in brain function and neurodegenerative disease. Nat. Rev. Neurosci. 19, 610–621 (2018).

Article  CAS  PubMed  Google Scholar 

Strauss, S. et al. Detection of interleukin-6 and alpha 2-macroglobulin immunoreactivity in cortex and hippocampus of Alzheimer’s disease patients. Lab. Invest. 66, 223–230 (1992).

CAS  PubMed  Google Scholar 

Moonen, S. et al. Pyroptosis in Alzheimer’s disease: cell type-specific activation in microglia, astrocytes and neurons. Acta Neuropathol. 145, 175–195 (2023).

Article  CAS  PubMed  Google Scholar 

Thal, D. R. et al. Progression of neurofibrillary changes and PHF-tau in end-stage Alzheimer’s disease is different from plaque and cortical microglial pathology. Neurobiol. Aging 19, 517–525 (1998).

Article  CAS  PubMed  Google Scholar 

Boon, B. D. C. et al. Neuroinflammation is increased in the parietal cortex of atypical Alzheimer’s disease. J. Neuroinflammation 15, 170 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Zotova, E. et al. Inflammatory components in human Alzheimer’s disease and after active amyloid-β42 immunization. Brain 136, 2677–2696 (2013).

Article  PubMed  Google Scholar 

Neuropathology Group. Medical Research Council Cognitive Function and Aging Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 357, 169–175 (2001).

Article  Google Scholar 

Franco-Bocanegra, D. K. et al. Microglial motility in Alzheimer’s disease and after Aβ42 immunotherapy: a human post-mortem study. Acta Neuropathol. Commun. 7, 174 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Boche, D. & Nicoll, J. A. R. Invited review — understanding cause and effect in Alzheimer’s pathophysiology: implications for clinical trials. Neuropathol. Appl. Neurobiol. 46, 623–640 (2020).

Article  CAS  PubMed  Google Scholar 

Minett, T. et al. Microglial immunophenotype in dementia with Alzheimer’s pathology. J. Neuroinflammation 13, 135 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Boon, B. D. C. et al. The coarse-grained plaque: a divergent Aβ plaque-type in early-onset Alzheimer’s disease. Acta Neuropathol. 140, 811–830 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jakel, L., Boche, D., Nicoll, J. A. R. & Verbeek, M. M. Aβ43 in human Alzheimer’s disease: effects of active Aβ42 immunization. Acta Neuropathol. Commun. 7, 141 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Moro, M. L. et al. Pyroglutamate and isoaspartate modified amyloid-beta in ageing and Alzheimer’s disease. Acta Neuropathol. Commun. 6, 3 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Nicoll, J. A. et al. Aβ species removal after aβ42 immunization. J. Neuropathol. Exp. Neurol. 65, 1040–1048 (2006).

Article  CAS  PubMed  Google Scholar 

Tondo, G. et al. The combined effects of microglia activation and brain glucose hypometabolism in early-onset Alzheimer’s disease. Alzheimers Res. Ther. 12, 50 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pirttila, T., Mehta, P. D., Frey, H. & Wisniewski, H. M. α1-Antichymotrypsin and IL-1β are not increased in CSF or serum in Alzheimer’s disease. Neurobiol. Aging 15, 313–317 (1994).

Article  CAS  PubMed  Google Scholar 

Lai, K. S. P. et al. Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies. J. Neurol. Neurosurg. Psychiatry 88, 876–882 (2017).

Article  PubMed  Google Scholar 

Swardfager, W. et al. A meta-analysis of cytokines in Alzheimer’s disease. Biol. Psychiatry 68, 930–941 (2010).

Article  CAS  PubMed  Google Scholar 

Brosseron, F. et al. Characterization and clinical use of inflammatory cerebrospinal fluid protein markers in Alzheimer’s disease. Alzheimers Res. Ther. 10, 25 (2018).

留言 (0)

沒有登入
gif