Endogenous thymic regeneration: restoring T cell production following injury

Laios, K. The thymus gland in ancient Greek medicine. Hormones 17, 285–286 (2018).

Article  PubMed  Google Scholar 

Miller, J. The function of the thymus and its impact on modern medicine. Science 369, eaba2429 (2020).

Article  CAS  PubMed  Google Scholar 

Nikolich-Žugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

Article  PubMed  Google Scholar 

Li, Y. R. & Zúñiga-Pflücker, J. C. Thymus aging and immune reconstitution, progresses and challenges. Semin. Immunol. 70, 101837 (2023).

Article  CAS  PubMed  Google Scholar 

van den Broek, T. et al. Neonatal thymectomy reveals differentiation and plasticity within human naive T cells. J. Clin. Invest. 126, 1126–1136 (2016). This work provides clinical evidence for endogenous thymic regeneration in children with partial thymectomy.

Article  PubMed  PubMed Central  Google Scholar 

Kinsella, S. & Dudakov, J. A. When the damage is done: injury and repair in thymus function. Front. Immunol. 11, 1745 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao, S. et al. Sublethal total body irradiation causes long-term deficits in thymus function by reducing lymphoid progenitors. J. Immunol. 199, 2701–2712 (2017).

Article  CAS  PubMed  Google Scholar 

Jaffe, H. L. The influence of the suprarenal gland on the thymus : I. Regeneration of the thymus following double suprarenalectomy in the rat. J. Exp. Med. 40, 325–342 (1924).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marmorston-Gottesman, J. & Jaffe, H. L. Compensatory hypertrophy of the thymus gland in the rat. J. Exp. Med. 42, 413–418 (1925).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gruver, A. L. & Sempowski, G. D. Cytokines, leptin, and stress-induced thymic atrophy. J. Leukoc. Biol. 84, 915–923 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taves, M. D. & Ashwell, J. D. Glucocorticoids in T cell development, differentiation and function. Nat. Rev. Immunol. 21, 233–243 (2020).

Article  PubMed  Google Scholar 

Fletcher, A. L. et al. Ablation and regeneration of tolerance-inducing medullary thymic epithelial cells after cyclosporine, cyclophosphamide, and dexamethasone treatment. J. Immunol. 183, 823–831 (2009).

Article  CAS  PubMed  Google Scholar 

Klopack, E. T., Crimmins, E. M., Cole, S. W., Seeman, T. E. & Carroll, J. E. Social stressors associated with age-related T lymphocyte percentages in older US adults: evidence from the US Health and Retirement Study. Proc. Natl Acad. Sci. USA 119, e2202780119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hong, J. Y. et al. Long-term programming of CD8 T cell immunity by perinatal exposure to glucocorticoids. Cell 180, 847–861.e815 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pazirandeh, A., Jondal, M. & Okret, S. Conditional expression of a glucocorticoid receptor transgene in thymocytes reveals a role for thymic-derived glucocorticoids in thymopoiesis in vivo. Endocrinology 146, 2501–2507 (2005).

Article  CAS  PubMed  Google Scholar 

Willich, E. in The Thymus: Diagnostic Imaging, Functions, and Pathologic Anatomy (eds Walter, E. et al.) 57–61 (Springer, 1992).

Kuhl, H. et al. The effect of sex steroids and hormonal contraceptives upon thymus and spleen on intact female rats. Contraception 28, 587–601 (1983).

Article  CAS  PubMed  Google Scholar 

Windmill, K. F., Meade, B. J. & Lee, V. W. Effect of prepubertal gonadectomy and sex steroid treatment on the growth and lymphocyte populations of the rat thymus. Reprod. Fertil. Dev. 5, 73–81 (1993).

Article  CAS  PubMed  Google Scholar 

Abramson, J. & Anderson, G. Thymic epithelial cells. Annu. Rev. Immunol. 35, 85–118 (2017).

Article  CAS  PubMed  Google Scholar 

Velardi, E., Dudakov, J. A. & van den Brink, M. R. Sex steroid ablation: an immunoregenerative strategy for immunocompromised patients. Bone Marrow Transplant. 50, S77–S81 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lai, K.-P. Targeting thymic epithelia AR enhances T-cell reconstitution and bone marrow transplant grafting efficacy. Mol. Endocrinol. 27, 25–37 (2013).

Article  CAS  PubMed  Google Scholar 

Kovacs, W. J. & Olsen, N. J. Androgen receptors in human thymocytes. J. Immunol. 139, 490–493 (1987).

Article  CAS  PubMed  Google Scholar 

Dulos, G. J. & Bagchus, W. M. Androgens indirectly accelerate thymocyte apoptosis. Int. Immunopharmacol. 1, 321–328 (2001).

Article  CAS  PubMed  Google Scholar 

Velardi, E. et al. Sex steroid blockade enhances thymopoiesis by modulating Notch signaling. J. Exp. Med. 211, 2341–2349 (2014). This work provides evidence of the direct regulation of the intrathymic Notch ligand DLL4 by androgen receptor signaling, which provides a molecular mechansim by which sex steroid inhibition boosts thymic function.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Y. Thymus-derived glucocorticoids mediate androgen effects on thymocyte homeostasis. FASEB J. 24, 5043–5051 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Tibbetts, T. A., Demayo, F., Rich, S., Conneely, O. M. & O’Malley, B. W. Progesterone receptors in the thymus are required for thymic involution during pregnancy and for normal fertility. Proc. Natl Acad. Sci. USA 96, 12021–12026 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dumont-Lagacé, M. et al. Qualitative changes in cortical thymic epithelial cells drive postpartum thymic regeneration. Front. Immunol. 10, 3118 (2019).

Article  PubMed  Google Scholar 

Laan, M., Haljasorg, U., Kisand, K., Salumets, A. & Peterson, P. Pregnancy-induced thymic involution is associated with suppression of chemokines essential for T-lymphoid progenitor homing. Eur. J. Immunol. 46, 2008–2017 (2016).

Article  CAS  PubMed  Google Scholar 

Paolino, M. et al. RANK links thymic regulatory T cells to fetal loss and gestational diabetes in pregnancy. Nature 589, 442–447 (2021). This work provides strong evidence linking pregnancy outcomes to molecular rewiring in the thymus, resulting in thymic involution and production of Tregcells.

Article  CAS  PubMed  Google Scholar 

Billard, M. J., Gruver, A. L. & Sempowski, G. D. Acute endotoxin-induced thymic atrophy is characterized by intrathymic inflammatory and wound healing responses. PLoS ONE 6, e17940 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ross, E. A. Thymic function is maintained during Salmonella-induced atrophy and recovery. J. Immunol. 189, 4266–4274 (2012).

Article  CAS  PubMed  Google Scholar 

Deobagkar-Lele, M., Chacko, S. K., Victor, E. S., Kadthur, J. C. & Nandi, D. Interferon-γ- and glucocorticoid-mediated pathways synergize to enhance death of CD4+ CD8+ thymocytes during Salmonella enterica serovar Typhimurium infection. Immunology 138, 307–321 (2013).

Article 

留言 (0)

沒有登入
gif