Association of TCF7L2 genetic variants rs12255372 and rs7903146 with the polycystic ovary syndrome risk: systemic review and meta-analysis

Azziz R. Polycystic ovary syndrome. Obstet Gynecol. 2018;132:321–36. https://doi.org/10.1097/AOG.0000000000002698.

Article  PubMed  Google Scholar 

Salari N, Nankali A, Ghanbari A, et al. Global prevalence of polycystic ovary syndrome in women worldwide: a comprehensive systematic review and meta-analysis. Arch Gynecol Obstet. 2024;310:1303–14. https://doi.org/10.1007/s00404-024-07607-x.

Article  PubMed  Google Scholar 

Rotterdam E, ASRM SPONSORED PCOS CONCENSUS WORKSHOP GROUP. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25. https://doi.org/10.1016/j.fertnstert.2003.10.004.

Article  Google Scholar 

Azziz R, Carmina E, Dewailly D, et al. The androgen excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009;91:456–88. https://doi.org/10.1016/j.fertnstert.2008.06.035.

Article  PubMed  Google Scholar 

Liu J, Wu Q, Hao Y, et al. Measuring the global disease burden of polycystic ovary syndrome in 194 countries: global burden of Disease Study 2017. Hum Rep. 2021;36:1108–19. https://doi.org/10.1093/humrep/deaa371.

Article  Google Scholar 

Bahreiny SS, Ahangarpour A, Saki N, et al. Association of Free Radical product and polycystic ovary syndrome: a systematic review and Meta-analysis. Reprod Sci. 2024;31:1486–95. https://doi.org/10.1007/s43032-023-01447-x.

Article  PubMed  Google Scholar 

Livadas S, Anagnostis P, Bosdou JK, Bantouna D, Paparodis R. Polycystic ovary syndrome and type 2 diabetes mellitus: a state-of-the-art review. World J Diabetes. 2022;13:5–26. https://doi.org/10.4239/wjd.v13.i1.5.

Article  PubMed  PubMed Central  Google Scholar 

Chakraborty S, Naskar TK, Basu BR. Vitamin D deficiency, insulin resistance, and antimüllerian hormone level: a tale of trio in the expression of polycystic ovary syndrome. F&S Science. 2024, 5:252–64. https://doi.org/10.1016/j.xfss.2024.06.002

Del Bosque-Plata L, Martínez-Martínez E, Espinoza-Camacho M, Gragnoli C. The role of TCF7L2 in type 2 diabetes. Diabetes. 2021;70:1220–8. https://doi.org/10.2337/db20-0573.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jones MR, Goodarzi MO. Genetic determinants of polycystic ovary syndrome: progress and future directions. Fertil Steril. 2016;106:25–32. https://doi.org/10.1016/j.fertnstert.2016.04.040.

Article  PubMed  Google Scholar 

Ip W, Chiang Y-TA, Jin T. The involvement of the wnt signaling pathway and TCF7L2 in diabetes mellitus: the current understanding, dispute, and perspective. Cell Biosci. 2012;2:28–28. https://doi.org/10.1186/2045-3701-2-28.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Biyasheva A, Legro RS, Dunaif A, Urbanek M. Evidence for association between polycystic ovary syndrome (PCOS) and TCF7L2 and glucose intolerance in women with PCOS and TCF7L2. J Clin Endocrinol Metab. 2009;94:2617–25. https://doi.org/10.1210/jc.2008-1664.

Khan MJ, Ullah A, Basit S. Genetic basis of polycystic ovary syndrome (PCOS): current perspectives. Appl Clin Genet. 2019;12:249–60. https://doi.org/10.2147/TACG.S200341.

Article  PubMed  PubMed Central  Google Scholar 

Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary syndrome: pathogenic role of androgen excess and potential therapeutic strategies. Mol Metabolism. 2020;35:100937. https://doi.org/10.1016/j.molmet.2020.01.001.

Article  CAS  Google Scholar 

Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38:320–3. https://doi.org/10.1038/ng1732.

Article  PubMed  CAS  Google Scholar 

Ding W, Xu L, Zhang L, et al. Meta-analysis of association between TCF7L2 polymorphism rs7903146 and type 2 diabetes mellitus. BMC Med Genet. 2018;19:38. https://doi.org/10.1186/s12881-018-0553-5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ramos RB, Fabris VC, de Almeida Brondani L, Spritzer PM. Association between rs7903146 and rs12255372 polymorphisms of transcription factor 7-like 2 gene and polycystic ovary syndrome: a systematic review and meta-analysis. Endocrine. 2015;49:635–42. https://doi.org/10.1007/s12020-015-0541-x.

Article  PubMed  CAS  Google Scholar 

Shen W-J, Li T-R, Hu Y-J, Liu H-B, Song M. Relationships between TCF7L2 genetic polymorphisms and polycystic ovary syndrome risk: a meta-analysis. Metab Syndr Relat Disord. 2014;12:210–9. https://doi.org/10.1089/met.2014.0004.

Article  PubMed  CAS  Google Scholar 

Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine. 2009, 151:264–269.

Barber TM, Bennett AJ, Groves CJ, et al. Disparate genetic influences on polycystic ovary syndrome (PCOS) and type 2 diabetes revealed by a lack of association between common variants within the TCF7L2 gene and PCOS. Diabetologia. 2007;50:2318–22. https://doi.org/10.1007/s00125-007-0804-z.

Article  PubMed  CAS  Google Scholar 

Christopoulos P, Mastorakos G, Gazouli M, et al. Genetic variants in TCF7L2 and KCNJ11 genes in a Greek population with polycystic ovary syndrome. Gynecol Endocrinol. 2008;24:486–90. https://doi.org/10.1080/09513590802196379.

Article  PubMed  CAS  Google Scholar 

Xu P, Che Y, Cao Y, et al. Polymorphisms of TCF7L2 and HHEX genes in Chinese women with polycystic ovary syndrome. J Assist Reprod Genet. 2010;27:23–8. https://doi.org/10.1007/s10815-009-9377-8.

Article  PubMed  CAS  Google Scholar 

Kim JJ, Choi YM, Cho YM, et al. Polycystic ovary syndrome is not associated with polymorphisms of the TCF7L2, CDKAL1, HHEX, KCNJ11, FTO and SLC30A8 genes. Clin Endocrinol (Oxf). 2012;77:439–45. https://doi.org/10.1111/j.1365-2265.2012.04389.x.

Article  PubMed  CAS  Google Scholar 

Včelák J, Vejražková D, Vaňková M, et al. T2D risk haplotypes of the TCF7L2 gene in the Czech population sample: the association with free fatty acids composition. Physiol Res. 2012;61:229–40. https://doi.org/10.33549/physiolres.932272.

Article  PubMed  Google Scholar 

Ramos RB, Wiltgen D, Spritzer PM. Polymorphisms of TCF7L2 gene in South Brazilian women with polycystic ovary syndrome: a cross-sectional study. Eur J Endocrinol. 2013;169:569–76. https://doi.org/10.1530/EJE-13-0105.

Article  PubMed  CAS  Google Scholar 

Ben-Salem A, Ajina M, Suissi M, Daher HS, Almawi WY, Mahjoub T. Polymorphisms of transcription factor-7-like 2 (TCF7L2) gene in Tunisian women with polycystic ovary syndrome (PCOS). Gene. 2014;533:554–7. https://doi.org/10.1016/j.gene.2013.09.104.

Article  PubMed  CAS  Google Scholar 

Reddy BM, Kommoju UJ, Dasgupta S, Rayabarapu P. Association of type 2 diabetes mellitus genes in polycystic ovary syndrome aetiology among women from southern India. Indian J Med Res. 2016;144:400–8. https://doi.org/10.4103/0971-5916.198678.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rashid R, Shah IA, Asrar MM, Godha M, Ganai BA, Ganie MA. Family history of menstrual irregularity or diabetes mellitus enhances the susceptibility to polycystic ovary syndrome among subjects harboring rs7903146 genetic variant of TCF7L2. J Diabetes Metabolic Disorders. 2022;21:769–76. https://doi.org/10.1007/s40200-022-01050-y.

Article  CAS  Google Scholar 

Rashid R, Shah IA, Makhdoomi MJ, et al. Association of TCF7L2 gene variant (rs12255372) with polycystic ovary syndrome and its Effect modification of the Disease phenotype. Indian J Clin Biochem. 2023. https://doi.org/10.1007/s12291-023-01115-6.

Article  PubMed  Google Scholar 

Cadigan KM. ML Waterman 2012 TCF/LEFs and wnt signaling in the nucleus. Cold Spring Harb Perspect Biol 4 a007906 https://doi.org/10.1101/cshperspect.a007906.

Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99. https://doi.org/10.1016/j.cell.2017.05.016.

Article  PubMed  CAS  Google Scholar 

Shu L, Sauter NS, Schulthess FT, Matveyenko AV, Oberholzer J, Maedler K. Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets. Diabetes. 2008;57:645–53. https://doi.org/10.2337/db07-0847.

Article  PubMed 

留言 (0)

沒有登入
gif