Azziz R. Polycystic ovary syndrome. Obstet Gynecol. 2018;132:321–36. https://doi.org/10.1097/AOG.0000000000002698.
Salari N, Nankali A, Ghanbari A, et al. Global prevalence of polycystic ovary syndrome in women worldwide: a comprehensive systematic review and meta-analysis. Arch Gynecol Obstet. 2024;310:1303–14. https://doi.org/10.1007/s00404-024-07607-x.
Rotterdam E, ASRM SPONSORED PCOS CONCENSUS WORKSHOP GROUP. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25. https://doi.org/10.1016/j.fertnstert.2003.10.004.
Azziz R, Carmina E, Dewailly D, et al. The androgen excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009;91:456–88. https://doi.org/10.1016/j.fertnstert.2008.06.035.
Liu J, Wu Q, Hao Y, et al. Measuring the global disease burden of polycystic ovary syndrome in 194 countries: global burden of Disease Study 2017. Hum Rep. 2021;36:1108–19. https://doi.org/10.1093/humrep/deaa371.
Bahreiny SS, Ahangarpour A, Saki N, et al. Association of Free Radical product and polycystic ovary syndrome: a systematic review and Meta-analysis. Reprod Sci. 2024;31:1486–95. https://doi.org/10.1007/s43032-023-01447-x.
Livadas S, Anagnostis P, Bosdou JK, Bantouna D, Paparodis R. Polycystic ovary syndrome and type 2 diabetes mellitus: a state-of-the-art review. World J Diabetes. 2022;13:5–26. https://doi.org/10.4239/wjd.v13.i1.5.
Article PubMed PubMed Central Google Scholar
Chakraborty S, Naskar TK, Basu BR. Vitamin D deficiency, insulin resistance, and antimüllerian hormone level: a tale of trio in the expression of polycystic ovary syndrome. F&S Science. 2024, 5:252–64. https://doi.org/10.1016/j.xfss.2024.06.002
Del Bosque-Plata L, Martínez-Martínez E, Espinoza-Camacho M, Gragnoli C. The role of TCF7L2 in type 2 diabetes. Diabetes. 2021;70:1220–8. https://doi.org/10.2337/db20-0573.
Article PubMed PubMed Central CAS Google Scholar
Jones MR, Goodarzi MO. Genetic determinants of polycystic ovary syndrome: progress and future directions. Fertil Steril. 2016;106:25–32. https://doi.org/10.1016/j.fertnstert.2016.04.040.
Ip W, Chiang Y-TA, Jin T. The involvement of the wnt signaling pathway and TCF7L2 in diabetes mellitus: the current understanding, dispute, and perspective. Cell Biosci. 2012;2:28–28. https://doi.org/10.1186/2045-3701-2-28.
Article PubMed PubMed Central CAS Google Scholar
Biyasheva A, Legro RS, Dunaif A, Urbanek M. Evidence for association between polycystic ovary syndrome (PCOS) and TCF7L2 and glucose intolerance in women with PCOS and TCF7L2. J Clin Endocrinol Metab. 2009;94:2617–25. https://doi.org/10.1210/jc.2008-1664.
Khan MJ, Ullah A, Basit S. Genetic basis of polycystic ovary syndrome (PCOS): current perspectives. Appl Clin Genet. 2019;12:249–60. https://doi.org/10.2147/TACG.S200341.
Article PubMed PubMed Central Google Scholar
Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary syndrome: pathogenic role of androgen excess and potential therapeutic strategies. Mol Metabolism. 2020;35:100937. https://doi.org/10.1016/j.molmet.2020.01.001.
Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38:320–3. https://doi.org/10.1038/ng1732.
Article PubMed CAS Google Scholar
Ding W, Xu L, Zhang L, et al. Meta-analysis of association between TCF7L2 polymorphism rs7903146 and type 2 diabetes mellitus. BMC Med Genet. 2018;19:38. https://doi.org/10.1186/s12881-018-0553-5.
Article PubMed PubMed Central CAS Google Scholar
Ramos RB, Fabris VC, de Almeida Brondani L, Spritzer PM. Association between rs7903146 and rs12255372 polymorphisms of transcription factor 7-like 2 gene and polycystic ovary syndrome: a systematic review and meta-analysis. Endocrine. 2015;49:635–42. https://doi.org/10.1007/s12020-015-0541-x.
Article PubMed CAS Google Scholar
Shen W-J, Li T-R, Hu Y-J, Liu H-B, Song M. Relationships between TCF7L2 genetic polymorphisms and polycystic ovary syndrome risk: a meta-analysis. Metab Syndr Relat Disord. 2014;12:210–9. https://doi.org/10.1089/met.2014.0004.
Article PubMed CAS Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine. 2009, 151:264–269.
Barber TM, Bennett AJ, Groves CJ, et al. Disparate genetic influences on polycystic ovary syndrome (PCOS) and type 2 diabetes revealed by a lack of association between common variants within the TCF7L2 gene and PCOS. Diabetologia. 2007;50:2318–22. https://doi.org/10.1007/s00125-007-0804-z.
Article PubMed CAS Google Scholar
Christopoulos P, Mastorakos G, Gazouli M, et al. Genetic variants in TCF7L2 and KCNJ11 genes in a Greek population with polycystic ovary syndrome. Gynecol Endocrinol. 2008;24:486–90. https://doi.org/10.1080/09513590802196379.
Article PubMed CAS Google Scholar
Xu P, Che Y, Cao Y, et al. Polymorphisms of TCF7L2 and HHEX genes in Chinese women with polycystic ovary syndrome. J Assist Reprod Genet. 2010;27:23–8. https://doi.org/10.1007/s10815-009-9377-8.
Article PubMed CAS Google Scholar
Kim JJ, Choi YM, Cho YM, et al. Polycystic ovary syndrome is not associated with polymorphisms of the TCF7L2, CDKAL1, HHEX, KCNJ11, FTO and SLC30A8 genes. Clin Endocrinol (Oxf). 2012;77:439–45. https://doi.org/10.1111/j.1365-2265.2012.04389.x.
Article PubMed CAS Google Scholar
Včelák J, Vejražková D, Vaňková M, et al. T2D risk haplotypes of the TCF7L2 gene in the Czech population sample: the association with free fatty acids composition. Physiol Res. 2012;61:229–40. https://doi.org/10.33549/physiolres.932272.
Ramos RB, Wiltgen D, Spritzer PM. Polymorphisms of TCF7L2 gene in South Brazilian women with polycystic ovary syndrome: a cross-sectional study. Eur J Endocrinol. 2013;169:569–76. https://doi.org/10.1530/EJE-13-0105.
Article PubMed CAS Google Scholar
Ben-Salem A, Ajina M, Suissi M, Daher HS, Almawi WY, Mahjoub T. Polymorphisms of transcription factor-7-like 2 (TCF7L2) gene in Tunisian women with polycystic ovary syndrome (PCOS). Gene. 2014;533:554–7. https://doi.org/10.1016/j.gene.2013.09.104.
Article PubMed CAS Google Scholar
Reddy BM, Kommoju UJ, Dasgupta S, Rayabarapu P. Association of type 2 diabetes mellitus genes in polycystic ovary syndrome aetiology among women from southern India. Indian J Med Res. 2016;144:400–8. https://doi.org/10.4103/0971-5916.198678.
Article PubMed PubMed Central CAS Google Scholar
Rashid R, Shah IA, Asrar MM, Godha M, Ganai BA, Ganie MA. Family history of menstrual irregularity or diabetes mellitus enhances the susceptibility to polycystic ovary syndrome among subjects harboring rs7903146 genetic variant of TCF7L2. J Diabetes Metabolic Disorders. 2022;21:769–76. https://doi.org/10.1007/s40200-022-01050-y.
Rashid R, Shah IA, Makhdoomi MJ, et al. Association of TCF7L2 gene variant (rs12255372) with polycystic ovary syndrome and its Effect modification of the Disease phenotype. Indian J Clin Biochem. 2023. https://doi.org/10.1007/s12291-023-01115-6.
Cadigan KM. ML Waterman 2012 TCF/LEFs and wnt signaling in the nucleus. Cold Spring Harb Perspect Biol 4 a007906 https://doi.org/10.1101/cshperspect.a007906.
Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99. https://doi.org/10.1016/j.cell.2017.05.016.
Article PubMed CAS Google Scholar
Shu L, Sauter NS, Schulthess FT, Matveyenko AV, Oberholzer J, Maedler K. Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets. Diabetes. 2008;57:645–53. https://doi.org/10.2337/db07-0847.
留言 (0)