Akhtar A, Dhaliwal J, Saroj P, Uniyal A, Bishnoi M, Sah SP (2020) Chromium picolinate attenuates cognitive deficit in ICV-STZ rat paradigm of sporadic Alzheimer ‘s-like dementia via targeting neuroinflammatory and IRS-1/PI3K/AKT/GSK-3β pathway. Inflammopharmacology 28:385–400. https://doi.org/10.1007/s10787-019-00681-7
Article PubMed CAS Google Scholar
Ali A, Ali, Amena, Ahmad W, Ahmad N, Khan S, Nuruddin SM, Husain I (2020) Deciphering the role of WNT signaling in metabolic syndrome–linked Alzheimer’s Disease. Mol Neurobiol 57:302–314. https://doi.org/10.1007/s12035-019-01700-y
Article PubMed CAS Google Scholar
Amanollahi M, Jameie M, Heidari A, Rezaei N (2023) The dialogue between Neuroinflammation and Adult Neurogenesis: mechanisms involved and alterations in neurological diseases. Mol Neurobiol 60:923–959. https://doi.org/10.1007/s12035-022-03102-z
Article PubMed CAS Google Scholar
Arredondo SB, Valenzuela-Bezanilla D, Mardones MD, Varela-Nallar L (2020) Role of wnt signaling in adult hippocampal neurogenesis in Health and Disease. Front Cell Dev Biol 8. https://doi.org/10.3389/fcell.2020.00860
Balu D, Lucki I (2009) Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Rev 33:232–252. https://doi.org/10.1016/j.neubiorev.2008.08.007
Bellary S, Kyrou I, Brown JE, Bailey CJ (2021) Type 2 diabetes mellitus in older adults: clinical considerations and management. Nat Rev Endocrinol 17:534–548. https://doi.org/10.1038/s41574-021-00512-2
Biessels GJ, Reagan LP (2015) Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci 16:660–671. https://doi.org/10.1038/nrn4019
Article PubMed CAS Google Scholar
Butterfield DA, Di Domenico F, Barone E (2014) Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in the brain. Biochim Biophys Acta (BBA) - Mol Basis Dis 1842:1693–1706. https://doi.org/10.1016/j.bbadis.2014.06.010
Chatterjee K, Pal A, Padhy DS, Saha R, Chatterjee A, Bharadwaj M, Sarkar B, Mazumder PM, Banerjee S (2024) Vitamin K2 ameliorates Diabetes-Associated Cognitive decline by reducing oxidative stress and neuroinflammation. J Neuroimmune Pharmacol 19:56. https://doi.org/10.1007/s11481-024-10156-4
Chaturvedi S, Tiwari V, Gangadhar NM, Rashid M, Sultana N, Singh SK, Shukla S, Wahajuddin M (2021) Isoformononetin, a dietary isoflavone, protects against streptozotocin-induced rat model of neuroinflammation through inhibition of NLRP3/ASC/IL-1 axis activation. Life Sci 286:119989. https://doi.org/10.1016/j.lfs.2021.119989
Article PubMed CAS Google Scholar
Chen X, Famurewa AC, Tang J, Olatunde OO, Olatunji OJ (2022) Hyperoside attenuates neuroinflammation, cognitive impairment, and oxidative stress via suppressing TNF-α/NF-κB/caspase-3 signaling in type 2 diabetes rats. Nutr Neurosci 25:1774–1784. https://doi.org/10.1080/1028415X.2021.1901047
Article PubMed CAS Google Scholar
Choi DH, Kwon IS, Koo JH, Jang YC, Kang EB, Byun JE, Um HS, Park HS, Yeom DC, Cho IH, Cho JY (2014) The effect of treadmill exercise on inflammatory responses in a rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. J Exerc Nutr Biochem 18:225–233. https://doi.org/10.5717/jenb.2014.18.2.225
Cholerton B, Baker LD, Montine TJ, Craft S (2016) Type 2 diabetes, cognition, and dementia in older adults: toward a Precision Health Approach. Diabetes Spectr 29:210–219. https://doi.org/10.2337/ds16-0041
Article PubMed PubMed Central Google Scholar
Datusalia AK, Sharma SS (2014) Amelioration of diabetes-induced cognitive deficits by GSK-3β inhibition is attributed to Modulation of neurotransmitters and Neuroinflammation. Mol Neurobiol 50:390–405. https://doi.org/10.1007/s12035-014-8632-x
Article PubMed CAS Google Scholar
Dutta BJ, Singh S, Seksaria S, Das Gupta G, Singh A (2022) Inside the diabetic brain: insulin resistance and molecular mechanism associated with cognitive impairment and its possible therapeutic strategies. Pharmacol Res 182:106358. https://doi.org/10.1016/j.phrs.2022.106358
Article PubMed CAS Google Scholar
Gaspar JM, Baptista FI, Macedo MP, Ambrósio AF (2016) Inside the Diabetic Brain: role of different players involved in Cognitive decline. ACS Chem Neurosci 7:131–142. https://doi.org/10.1021/acschemneuro.5b00240
Article PubMed CAS Google Scholar
Grillo CA, Woodruff JL, Macht VA, Reagan LP (2019) Insulin resistance and hippocampal dysfunction: disentangling peripheral and brain causes from consequences. Exp Neurol 318:71–77. https://doi.org/10.1016/j.expneurol.2019.04.012
Article PubMed CAS Google Scholar
Hoveida R, Alaei H, Oryan S, Parivar K, Reisi P (2011) Treadmill running improves spatial memory in an animal model of Alzheimer’s disease. Behav Brain Res 216:270–274. https://doi.org/10.1016/j.bbr.2010.08.003
Hughes RN (2004) The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neurosci Biobehav Rev 28:497–505. https://doi.org/10.1016/j.neubiorev.2004.06.006
Article PubMed CAS Google Scholar
Hussain G, Akram R, Anwar H, Sajid F, Iman T, Han HS, Raza C, De Aguilar J-LG (2024) Adult neurogenesis. Neural Regen Res 19:6–15. https://doi.org/10.4103/1673-5374.375317
Article PubMed CAS Google Scholar
Jeong J-H, Koo J-H, Cho J-Y, Kang E-B (2018) Neuroprotective effect of treadmill exercise against blunted brain insulin signaling, NADPH oxidase, and tau hyperphosphorylation in rats fed a high-fat diet. Brain Res Bull 142:374–383. https://doi.org/10.1016/j.brainresbull.2018.08.001
Article PubMed CAS Google Scholar
Karvani M, Simos P, Stavrakaki S, Kapoukranidou D (2019) Neurocognitive impairment in type 2 diabetes mellitus. Hormones 18:523–534. https://doi.org/10.1007/s42000-019-00128-2
Kim B-K, Shin M-S, Kim C-J, Baek S-B, Ko Y-C, Kim Y-P (2014) Treadmill exercise improves short-term memory by enhancing neurogenesis in amyloid beta-induced Alzheimer’s disease rats. J Exerc Rehabil 10:2–8. https://doi.org/10.12965/jer.140086
Article PubMed PubMed Central Google Scholar
Lang BT, Yan Y, Dempsey RJ, Vemuganti R (2009) Impaired neurogenesis in adult type-2 diabetic rats. Brain Res 1258:25–33. https://doi.org/10.1016/j.brainres.2008.12.026
Article PubMed CAS Google Scholar
Lang X, Zhao N, He Q, Li X, Li X, Sun C, Zhang X (2020) Treadmill exercise mitigates neuroinflammation and increases BDNF via activation of SIRT1 signaling in a mouse model of T2DM. Brain Res Bull 165:30–39. https://doi.org/10.1016/j.brainresbull.2020.09.015
Article PubMed CAS Google Scholar
Lessard SJ, Rivas DA, Alves-Wagner AB, Hirshman MF, Gallagher IJ, Constantin-Teodosiu D, Atkins R, Greenhaff PL, Qi NR, Gustafsson T, Fielding RA, Timmons JA, Britton SL, Koch LG, Goodyear LJ (2013) Resistance to Aerobic Exercise Training causes metabolic dysfunction and reveals Novel Exercise-Regulated Signaling Networks. Diabetes 62:2717–2727. https://doi.org/10.2337/db13-0062
Article PubMed PubMed Central CAS Google Scholar
Li H, Ren J, Li Y, Wu Q, Wei J (2023) Oxidative stress: the nexus of obesity and cognitive dysfunction in diabetes. Front Endocrinol (Lausanne) 14. https://doi.org/10.3389/fendo.2023.1134025
Liu P, Cui L, Liu B, Liu W, Hayashi T, Mizuno K, Hattori S, Ushiki-Kaku Y, Onodera S, Ikejima T (2020) Silibinin ameliorates STZ-induced impairment of memory and learning by up-regulation of the insulin signaling pathway and attenuating apoptosis. Physiol Behav 213:112689. https://doi.org/10.1016/j.physbeh.2019.112689
Article PubMed CAS Google Scholar
Llorián-Salvador M, Cabeza-Fernández S, Gomez-Sanchez JA, de la Fuente AG (2024) Glial cell alterations in diabetes-induced neurodegeneration. Cell Mol Life Sci 81:47. https://doi.org/10.1007/s00018-023-05024-y
留言 (0)