Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. Biological activities and medicinal properties of neem (Azadirachta indica). Cur Sci. 2002; 82(11): 1336–1345. http://www.jstor.org/stable/24106000.
Ghosh AR, Alsayari A, Habib AH, Wahab S, Nadig APR, Rafeeq MM, et al. Anti-tumor potential of Gymnema sylvestre saponin rich fraction on in vitro breast cancer cell lines and in vivo tumor-bearing mouse models. Antioxidants (Basel). 2023;12(1):134. https://doi.org/10.3390/antiox12010134.
Article CAS PubMed Google Scholar
Shahbaz M, Naeem H, Maryam B, Imran M, Hussain M, Ahmed M, et al. Antioxidant, anticancer, and anti-inflammatory potential of Moringa seed and Moringa seed oil: a comprehensive approach. Food Sci Nut. 2024;12(9):6157–73. https://doi.org/10.1002/fsn3.4312.
Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers. 2016;7:2016. https://doi.org/10.3389/fmicb.2016.01831.
Gurunathan S, Qasim M, Park C, Yoo H, Kim JH, Hong K. Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. Int J Mol Sci. 2018;19(8):2269. https://doi.org/10.3390/ijms19082269.
Article CAS PubMed PubMed Central Google Scholar
Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534. https://doi.org/10.3390/ijms17091534.
Article CAS PubMed PubMed Central Google Scholar
Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20(5):8856–74. https://doi.org/10.3390/molecules20058856.
Article CAS PubMed PubMed Central Google Scholar
Yang Z, Sun Z, Ren Y, Chen X, Zhang W, Zhu X, et al. Advances in nanomaterials for use in photothermal and photodynamic therapeutics (Review). Mol Med Rep. 2019;20:5–15. https://doi.org/10.3892/mmr.2019.10218.
Article CAS PubMed PubMed Central Google Scholar
Wild CP, Weiderpass E, Stewart BW. World cancer report: cancer research for cancer prevention. Lyon, france: international agency for research on cancer.2020. ISBN-13: 978–92–832–0447–3.
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: A Can J Clin. 2011; 61(2): 69–90. https://doi.org/10.3322/caac.20107.
Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Deliv. 2012;2012:751075–112. https://doi.org/10.1155/2012/751075.
Article CAS PubMed Google Scholar
Franco-Molina MA, Mendoza-Gamboa E, Sierra-Rivera CA, Gómez-Flores RA, Zapata-Benavides P, Castillo-Tello P, et al. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J Exp Clin Cancer Res. 2010;29:148. https://doi.org/10.1186/1756-9966-29-148.
Article CAS PubMed PubMed Central Google Scholar
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J for Clin. 2018; 68(6): 394–424. https://doi.org/10.3322/caac.21492
Gurunathan S, Han JW, Kwon DN, Kim JH. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett. 2014;9:373. https://doi.org/10.1186/1556-276X-9-373.
Article CAS PubMed PubMed Central Google Scholar
Banala RR, Nagati VB, Karnati PR. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi J Biol Sci. 2015;22(5):637–44. https://doi.org/10.1016/j.sjbs.2015.01.007.
Article CAS PubMed PubMed Central Google Scholar
Vemuri SK, Banala RR, Mukherjee S, Uppula P, Gpv S, A V GR, et al. Novel biosynthesized gold nanoparticles as anti-cancer agents against breast cancer: synthesis, biological evaluation, molecular modelling studies. Mater Sci Eng C Mater Biol Appl. 2019; 99: 417–429. https://doi.org/10.1016/j.msec.2019.01.123.
Vemuri SK, Halder S, Banala RR, Rachamalla HK, Devraj VM, Mallarpu CS, et al. Modulatory effects of biosynthesized gold nanoparticles conjugated with curcumin and paclitaxel on tumorigenesis and metastatic pathways-in vitro and in vivo studies. Int J Mol Sci. 2022;23(4):2150. https://doi.org/10.3390/ijms23042150.
Article CAS PubMed PubMed Central Google Scholar
Brown JM, Attardi LD. The role of apoptosis in cancer development and treatment response. Nat Rev Can. 2005;5(3):231–7. https://doi.org/10.1038/nrc1560.
Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Can. 2005;5(3):161–71. https://doi.org/10.1038/nrc1566.
Gomes HIO, Martins CSM, Prior JAV. Silver nanoparticles as carriers of anticancer drugs for efficient target treatment of cancer cells. Nanomaterials. 2021;11(4):964. https://doi.org/10.3390/nano11040964.
Article CAS PubMed PubMed Central Google Scholar
Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arab J Chem. 2019;12(8):1823–38. https://doi.org/10.1016/j.arabjc.2014.12.014.
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotech. 2015;33(9):941–51. https://doi.org/10.1038/nbt.3330.
Jiang Y, Yang M, Wang T, Liu M, Wang H, Sun Q. The role of silver nanoparticles in cancer therapy: a review. Front in Pharm. 2022;13:812117. https://doi.org/10.3389/fphar.2022.812117.
Khan Y, Saeed M, Khan MI. Silver nanoparticles: a potential nanomedicine for cancer treatment. Nanomedicine. 2022;17(2):137–55. https://doi.org/10.2217/nnm-2021-0437.
Rajivgandhi G, Chelliah CK, Ramachandran G, Chackaravarthi G, Maruthupandy M, Alharbi NS, et al. Morphological modification of silver nanoparticles against multi-drug-resistant gram-negative bacteria and cytotoxicity effect in A549 lung cancer cells through in vitro approaches. Arch Microbiol. 2023;205(8):282. https://doi.org/10.1007/s00203-023-03611-y.
Article CAS PubMed Google Scholar
He Y, Du Z, Ma S, Liu Y, Li D, Huang H, et al. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int J Nanomedicine. 2016;11:1879–87. https://doi.org/10.2147/IJN.S103695.
Article CAS PubMed PubMed Central Google Scholar
Jagtap RR, Garud A, Puranik SS, Rudrapal M, Ansari MA, Alomary MN, et al. Biofabrication of silver nanoparticles (agnps) using embelin for effective therapeutic management of lung cancer. Front Nutr. 2022;9:960674. https://doi.org/10.3389/fnut.2022.960674.
Article CAS PubMed PubMed Central Google Scholar
Talib KM, Oraibi AG, Abass GI. Synthesis of bio-active silver nanoparticles against human lung cancer cell line (a549) with little toxicity to normal cell line (WRL68). Arch Razi Inst. 2023;78(5):1624–37. https://doi.org/10.22092/ARI.2023.78.5.1624.
Article CAS PubMed PubMed Central Google Scholar
Chota A, George BP, Abrahamse H. Apoptotic efficiency of Dicoma anomala biosynthesized silver nanoparticles against A549 lung cancer cells. Biomed Pharmacother. 2024;176:116845. https://doi.org/10.1016/j.biopha.2024.116845.
Article CAS PubMed Google Scholar
Khuda F, Gul M, Ali Khan Khalil A, Ali S, Ullah N, et al. Biosynthesized silver nanoparticles using Alnus nitida leaf extract as a potential antioxidant and anticancer agent. ACS Omega. 2023; 8(33): 30221–30230. 10.102 1/acsomega.3c02928.
Venugopal K, Rather HA, Rajagopal K, Shanthi MP, Sheriff K, Illiyas M, et al. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J Photochem Photobiol B. 2017;167:282–9. https://doi.org/10.1016/j.jphotobiol.2016.12.013.
Article CAS PubMed Google Scholar
Castro AV, Ahn S, Simu SY, Wang C, Mathiyalagan R, Yang DC. Silver nanoparticles from Dendropanax morbifera Leveille inhibit cell migration, induce apoptosis, and increase generation of reactive oxygen species in A549 lung cancer cells. In Vitro Cell Dev Biol Anim. 2016;52(10):1012–9. https://doi.org/10.1007/s11626-016-0057-6.
留言 (0)