Propagation characters of finite cosh-Airy laser beams passing through collisionless plasmas

M.V. Berry, N.L. Balazs, Nonspreading wave-packets. Am. J. Phys. 47, 264–267 (1979)

Article  ADS  MATH  Google Scholar 

G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Observation of accelerating Airy beams. Phys. Rev. Lett. 99, 213901 (2007)

Article  ADS  MATH  Google Scholar 

R.P. Chen, H.P. Zheng, C.Q. Dai, Wigner distribution function of an Airy beam. J. Opt. Soc. Am. A 28, 1307–1311 (2011)

Article  ADS  MATH  Google Scholar 

Y. Kaganovsky, E. Heyman, Wave analysis of Airy beams. Opt. Exp. 18, 8440–8452 (2010)

Article  MATH  Google Scholar 

P. Polynkin, M. Kolesik, J. Moloney, Filamentation of femtosecond laser Airy beams in water. Phys. Rev. Lett. 103, 123902 (2009)

Article  ADS  MATH  Google Scholar 

S. Jia, J. Lee, J.W. Fleischer, G.A. Siviloglou, D.N. Christodoulides, Diffusion-trapped Airy beams in photorefractive media. Phys. Rev. Lett. 104, 253904 (2010)

Article  ADS  Google Scholar 

X.X. Chu, Evolution of an Airy beam in turbulence. Opt. Lett. 36, 2701–2703 (2011)

Article  ADS  MATH  Google Scholar 

H.C. Lin, J.X. Pu, Propagation of Airy beams from right-handed material to left-handed material. Chin. Phys. B 21, 054201 (2012)

Article  ADS  MATH  Google Scholar 

G.Q. Zhou, R.P. Chen, G.Y. Ru, Propagation of an Airy beam in a strongly nonlocal nonlinear media. Laser Phys. Lett. 11, 105001 (2014)

Article  ADS  MATH  Google Scholar 

H.H. Li, J.G. Wang, M.M. Tang, X.Z. Li, Propagation properties of cosh-Airy beams. J. Mod. Opt. 65, 314–320 (2018)

Article  ADS  MathSciNet  MATH  Google Scholar 

H. Li, J. Wang, M. Tang, J. Cao, X. Li, Phase transition of cosh-Airy beams in inhomogeneous media. Opt. Commun. 427, 147–151 (2018)

Article  ADS  MATH  Google Scholar 

L. Chen, J. Wen, D. Sun, L.-G. Wang, Self-healing property of focused circular Airy beams. Opt. Exp. 28, 36516–36526 (2020)

Article  MATH  Google Scholar 

Y. Deng, B. Wen, L. Chen, S. Zhang, G. Zhang, C. Xiong, X. Leng, Propagation properties of cosh-Airy beams in an inhomogeneous medium with Gaussian PT-symmetric potentials. Open Phys. 20, 1031–1040 (2022)

Article  MATH  Google Scholar 

G. Zhou, R. Chen, X. Chu, Propagation of cosh-Airy beams in uniaxial crystals orthogonal to the optical axis. Opt. Laser Technol. 116, 72–82 (2019)

Article  ADS  MATH  Google Scholar 

J. Liu, R. Jiao, J. Wang, Z. Yang, K. Zhan, Propagation dynamics of cosh-Airy beams in Kerr nonlinear media. J. Nonlinear Opt. Phys. Mater. 28, 1950030 (2019)

Article  ADS  MATH  Google Scholar 

X.-J. Yang, Z.-S. Wu, T. Qu, Paraxial propagation of cosh-Airy vortex beams in chiral medium. Chin. Phys. B 29, 034201 (2020)

Article  ADS  MATH  Google Scholar 

Y. Zhou, Y. Xu, X. Chu, G. Zhou, Propagation of cosh-Airy and cos-Airy beams in parabolic potential. Appl. Sci. 9, 5530 (2019)

Article  MATH  Google Scholar 

F. Habibi, M. Moradi, Evaluation of nonlinear behavior of Airy, cos-Airy, and cosh-Airy beams with and without optical vortex. J. Opt. 24, 045507 (2022)

Article  ADS  MATH  Google Scholar 

D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 55, 447–449 (1985)

Article  ADS  MATH  Google Scholar 

M.S. Sodha, A.K. Ghatak, V.K. Tripathi, Self-focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169–265 (1976)

Article  ADS  MATH  Google Scholar 

A. Sharma, G. Prakash, M.P. Verma, M.S. Sodha, Three regimes of intense laser beam propagation in plasmas. Phys. Plasmas 10, 4079–4084 (2003)

Article  ADS  MATH  Google Scholar 

J. Rajput, N. Kant, A. Singh, Electron energy enhancement by frequency chirped axicon Gaussian laser pulse in vacuum. AIP Conf. Proc. 1860, 020005 (2017)

Article  MATH  Google Scholar 

J. Rajput, N. Kant, A. Singh, Electron acceleration due to a circularly polarized laser pulse on a downward plasma density ramp in the presence of an azimuthal magnetic field. AIP Conf. Proc. 2006, 030025 (2018)

Article  MATH  Google Scholar 

N. Kant, J. Rajput, A. Singh, Magnetic field assisted enhanced electron acceleration due to a chirped echelon phase modulated laser in vacuum. Optik 182, 858–865 (2019)

Article  MATH  Google Scholar 

J. Singh, J. Rajput, H.S. Ghotra, N. Kant, Electron acceleration by a radially polarised cosh-Gaussian laser beam in vacuum. Commun. Theor. Phys. 73, 095502 (2021)

Article  ADS  MathSciNet  MATH  Google Scholar 

J. Rajput, N. Kant, Electron acceleration to GeV energy by an axicon Gaussian laser pulse in a preformed ion channel. Optik 225, 165836 (2021)

Article  MATH  Google Scholar 

J. Singh, J. Rajput, N. Kant, S. Kumar, Comparative study of inverse free-electron laser interaction based on helical and planar wiggler. Optik 260, 169017 (2022)

Article  MATH  Google Scholar 

A.K. Pramanik, H.S. Ghotra, N. Kant, J. Rajput, Efficient electron acceleration by using Hermite-cosh-Gaussian laser beam in vacuum. Laser Phys. Lett. 19, 075301 (2022)

Article  ADS  MATH  Google Scholar 

A. Pramanik, H.S. Ghotra, N. Kant, J. Rajput, Comparison of different laser pulse envelopes with frequency chirp for efficient electron acceleration in vacuum. J. Phys. Conf. Ser. 2267, 012013 (2022)

Article  MATH  Google Scholar 

A.K. Pramanik, H.S. Ghotra, J. Rajput, Efficient electron acceleration by radially polarized Hermite-Cosh-Gaussian laser beam in an ion channel. Eur. Phys. J. D 77, 161 (2023)

Article  ADS  MATH  Google Scholar 

V. Sharma, S. Kumar, N. Kant, V. Thakur, Effect of frequency chirp and pulse length on laser wakefield excitation in under-dense plasma. Braz. J. Phys. 53, 157 (2023)

Article  ADS  MATH  Google Scholar 

V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma. Opt. Quant. Electron. 55, 1150 (2023)

Article  MATH  Google Scholar 

S. Kumar, V. Thakur, N. Kant, Magnetically enhanced THz generation by self-focusing laser in VA-MCNTs. Phys. Scr. 98, 085506 (2023)

Article  ADS  MATH  Google Scholar 

S. Kumar, S. Vij, N. Kant, V. Thakur, Nonlinear interaction of amplitude-modulated Gaussian laser beam with anharmonic magnetized and rippled CNTs: THz generation. Braz. J. Phys. 53, 37 (2023)

Article  ADS  MATH  Google Scholar 

S. Kumar, S. Vij, N. Kant, V. Thakur, Interaction of spatial-Gaussian lasers with the magnetized CNTs in the presence of DC electric field and enhanced THz emission. Phys. Scr. 98, 015015 (2023)

Article 

留言 (0)

沒有登入
gif