M.V. Berry, N.L. Balazs, Nonspreading wave-packets. Am. J. Phys. 47, 264–267 (1979)
Article ADS MATH Google Scholar
G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Observation of accelerating Airy beams. Phys. Rev. Lett. 99, 213901 (2007)
Article ADS MATH Google Scholar
R.P. Chen, H.P. Zheng, C.Q. Dai, Wigner distribution function of an Airy beam. J. Opt. Soc. Am. A 28, 1307–1311 (2011)
Article ADS MATH Google Scholar
Y. Kaganovsky, E. Heyman, Wave analysis of Airy beams. Opt. Exp. 18, 8440–8452 (2010)
P. Polynkin, M. Kolesik, J. Moloney, Filamentation of femtosecond laser Airy beams in water. Phys. Rev. Lett. 103, 123902 (2009)
Article ADS MATH Google Scholar
S. Jia, J. Lee, J.W. Fleischer, G.A. Siviloglou, D.N. Christodoulides, Diffusion-trapped Airy beams in photorefractive media. Phys. Rev. Lett. 104, 253904 (2010)
X.X. Chu, Evolution of an Airy beam in turbulence. Opt. Lett. 36, 2701–2703 (2011)
Article ADS MATH Google Scholar
H.C. Lin, J.X. Pu, Propagation of Airy beams from right-handed material to left-handed material. Chin. Phys. B 21, 054201 (2012)
Article ADS MATH Google Scholar
G.Q. Zhou, R.P. Chen, G.Y. Ru, Propagation of an Airy beam in a strongly nonlocal nonlinear media. Laser Phys. Lett. 11, 105001 (2014)
Article ADS MATH Google Scholar
H.H. Li, J.G. Wang, M.M. Tang, X.Z. Li, Propagation properties of cosh-Airy beams. J. Mod. Opt. 65, 314–320 (2018)
Article ADS MathSciNet MATH Google Scholar
H. Li, J. Wang, M. Tang, J. Cao, X. Li, Phase transition of cosh-Airy beams in inhomogeneous media. Opt. Commun. 427, 147–151 (2018)
Article ADS MATH Google Scholar
L. Chen, J. Wen, D. Sun, L.-G. Wang, Self-healing property of focused circular Airy beams. Opt. Exp. 28, 36516–36526 (2020)
Y. Deng, B. Wen, L. Chen, S. Zhang, G. Zhang, C. Xiong, X. Leng, Propagation properties of cosh-Airy beams in an inhomogeneous medium with Gaussian PT-symmetric potentials. Open Phys. 20, 1031–1040 (2022)
G. Zhou, R. Chen, X. Chu, Propagation of cosh-Airy beams in uniaxial crystals orthogonal to the optical axis. Opt. Laser Technol. 116, 72–82 (2019)
Article ADS MATH Google Scholar
J. Liu, R. Jiao, J. Wang, Z. Yang, K. Zhan, Propagation dynamics of cosh-Airy beams in Kerr nonlinear media. J. Nonlinear Opt. Phys. Mater. 28, 1950030 (2019)
Article ADS MATH Google Scholar
X.-J. Yang, Z.-S. Wu, T. Qu, Paraxial propagation of cosh-Airy vortex beams in chiral medium. Chin. Phys. B 29, 034201 (2020)
Article ADS MATH Google Scholar
Y. Zhou, Y. Xu, X. Chu, G. Zhou, Propagation of cosh-Airy and cos-Airy beams in parabolic potential. Appl. Sci. 9, 5530 (2019)
F. Habibi, M. Moradi, Evaluation of nonlinear behavior of Airy, cos-Airy, and cosh-Airy beams with and without optical vortex. J. Opt. 24, 045507 (2022)
Article ADS MATH Google Scholar
D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 55, 447–449 (1985)
Article ADS MATH Google Scholar
M.S. Sodha, A.K. Ghatak, V.K. Tripathi, Self-focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169–265 (1976)
Article ADS MATH Google Scholar
A. Sharma, G. Prakash, M.P. Verma, M.S. Sodha, Three regimes of intense laser beam propagation in plasmas. Phys. Plasmas 10, 4079–4084 (2003)
Article ADS MATH Google Scholar
J. Rajput, N. Kant, A. Singh, Electron energy enhancement by frequency chirped axicon Gaussian laser pulse in vacuum. AIP Conf. Proc. 1860, 020005 (2017)
J. Rajput, N. Kant, A. Singh, Electron acceleration due to a circularly polarized laser pulse on a downward plasma density ramp in the presence of an azimuthal magnetic field. AIP Conf. Proc. 2006, 030025 (2018)
N. Kant, J. Rajput, A. Singh, Magnetic field assisted enhanced electron acceleration due to a chirped echelon phase modulated laser in vacuum. Optik 182, 858–865 (2019)
J. Singh, J. Rajput, H.S. Ghotra, N. Kant, Electron acceleration by a radially polarised cosh-Gaussian laser beam in vacuum. Commun. Theor. Phys. 73, 095502 (2021)
Article ADS MathSciNet MATH Google Scholar
J. Rajput, N. Kant, Electron acceleration to GeV energy by an axicon Gaussian laser pulse in a preformed ion channel. Optik 225, 165836 (2021)
J. Singh, J. Rajput, N. Kant, S. Kumar, Comparative study of inverse free-electron laser interaction based on helical and planar wiggler. Optik 260, 169017 (2022)
A.K. Pramanik, H.S. Ghotra, N. Kant, J. Rajput, Efficient electron acceleration by using Hermite-cosh-Gaussian laser beam in vacuum. Laser Phys. Lett. 19, 075301 (2022)
Article ADS MATH Google Scholar
A. Pramanik, H.S. Ghotra, N. Kant, J. Rajput, Comparison of different laser pulse envelopes with frequency chirp for efficient electron acceleration in vacuum. J. Phys. Conf. Ser. 2267, 012013 (2022)
A.K. Pramanik, H.S. Ghotra, J. Rajput, Efficient electron acceleration by radially polarized Hermite-Cosh-Gaussian laser beam in an ion channel. Eur. Phys. J. D 77, 161 (2023)
Article ADS MATH Google Scholar
V. Sharma, S. Kumar, N. Kant, V. Thakur, Effect of frequency chirp and pulse length on laser wakefield excitation in under-dense plasma. Braz. J. Phys. 53, 157 (2023)
Article ADS MATH Google Scholar
V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma. Opt. Quant. Electron. 55, 1150 (2023)
S. Kumar, V. Thakur, N. Kant, Magnetically enhanced THz generation by self-focusing laser in VA-MCNTs. Phys. Scr. 98, 085506 (2023)
Article ADS MATH Google Scholar
S. Kumar, S. Vij, N. Kant, V. Thakur, Nonlinear interaction of amplitude-modulated Gaussian laser beam with anharmonic magnetized and rippled CNTs: THz generation. Braz. J. Phys. 53, 37 (2023)
Article ADS MATH Google Scholar
S. Kumar, S. Vij, N. Kant, V. Thakur, Interaction of spatial-Gaussian lasers with the magnetized CNTs in the presence of DC electric field and enhanced THz emission. Phys. Scr. 98, 015015 (2023)
留言 (0)