X. Li, J. Xiao, J. Yu, Long-distance wireless mm-wave signal delivery at W-band. J. Lightw. Technol. 34(2), 661–668 (2016)
Article ADS MATH Google Scholar
M. Zhu, L. Zhang, J. Wang, L. Cheng, C. Liu, G.K. Chang, Radio-over-fiber access architecture for integrated broadband wireless services. J. Lightw. Technol. 31(23), 3614–3620 (2013)
Article ADS MATH Google Scholar
T. Berceli, P.R. Herczfeld, Microwave photonics—Historical perspective. IEEE Trans. Microw. Theory Technol. 58(11), 2992–3000 (2010)
Z. Chen, L. Yan, Y. Guo, W. Pan, B. Luo, X. Zou, T. Zhou, SFDR enhancement in analog photonic links by simultaneous compensation for dispersion and nonlinearity. Opt. Express 21(18), 20999–21009 (2013)
S.K. Kim, W. Liu, Q. Pie, L.R. Dalton, Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator. Opt. Express 19(8), 7865–7871 (2011)
D. Liang, Q. Tan, W. Jiang, Z. Zhu, X. Li, Z. Yao, Influence of power distribution on performance of intermodulation distortion suppression. IEEE Photon. Technol. Lett. 27(15), 16391641 (2015)
B. Tamrakar, M.M. Siddique, P. Mishra, R. Gupta, H. Singh, Implementation and analysis of 5G technology for next generation network. J. Active Passive Electron. Dev. 17(4), 317–328 (2024)
Y. Zhou, L. Zhou, M. Wang, Y. Xia, Y. Zhong, X. Li, J. Chen, Linearity characterization of a dual parallel silicon Mach-Zehnder modulator. IEEE Photon. J. 8(6), 7805108 (2016)
Y. Wang, Z. Xu, Y. Feng, S. Fang, Coaxial resonant cavity for measuring complex permittivity of liquids. Frequenz 77(5–6), 229–234 (2023). https://doi.org/10.1515/freq-2022-0115
Article ADS MATH Google Scholar
B. Tamrakar, K. Singh, G. Jha, T. Garg, S. Goel, A. Sharma, S. Shukla, Y. Verma, Performance investigation of bit error rate using mostly utilized modulation schemes in RoF system for the Next Generation Networks. IEEE Xplore. (2023). https://doi.org/10.1109/PIECON56912.2023.10085789
M. Sauer, A. Kobyakov, A. Boh-Ruffin, Radio-over-fiber transmission with mitigated stimulated brillouin scattering. IEEE Photon. Technol. Lett. 19(19), 1487–1489 (2007)
S.K. Korotky, R.M. Ridder, Dual parallel modulation schemes for low-distortion analog optical transmission. IEEE J. Select. Areas Commun. 8(7), 1377–1381 (1990)
V.A. Thomas, M. El-Hajjar, L. Hanzo, Performance improvement and cost reduction techniques for radio over fiber communication. IEEE Commun. Surv. Tutor. 17(2), 627–670 (2015)
S. Shukla, V.K. Sachan, A. Sinha, S.K. Pandey, G. Madhukar-Rao, M.A. Shah, A. Choudhary, B. Tamrakar, WHOOPH: whale optimization-based optimal placement of hub node within a WBAN. Sci. Rep. 14, 3422 (2024)
Y.-D. Chung, K.-S. Choi, J.-S. Sim, H.-K. Yu, J. Kim, A 60-GHz- band analog optical system-on-package transmitter for fiber-radio communications. J. Lightw. Technol. 25(11), 3407–3412 (2007)
Article ADS MATH Google Scholar
B. Tamrakar, K. Singh, V. Gupta, D. Chaturvedi, A. Tiwari, H. Yadav, M.P. Singh, P. Gupta, P. Sharma, V.K. Verma, Fortifying file sharing systems security through AES encryption method for the next generation networks. J. Active Passive Electron. Dev. 18(1), 37–52 (2024)
H.-H. Lu, W.-I. Lin, C.-Y. Lee, S.-J. Tzeng, Y.-W. Chuang, A full-duplex radio-on-photonic crystal fiber transport system. IEEE Photon. Technol. Lett. 19(11), 831–833 (2007)
Article ADS MATH Google Scholar
H.-Y. Kao, S. Ishimura, K. Tanaka, K. Nishimura, R. Inohara, End-to- End demonstration of fiber-wireless fronthaul networks using a hybrid multi-IF-over-fiber and radio-over-fiber system. IEEE Photon. J. 13(4), 1–6 (2021)
H.A. Mahmoud, H. Arslan, Error vector magnitude to SNR conversion for non-data-aided receivers. IEEE Trans. Wirel. Commun. 8(5), 2694–2704 (2009)
M. Helfenstein, E. Baykal, K. Muller, A. Lampe, P. Semicond, and S. Zurich, Error vector magnitude EVM measurements for GSM/EDGE applications revised under production conditions, Proc. IEEE Int. Sym. Circuits Syst. (ISCAS), pp. 5003–5006, (2005).
A. Georgiadis, Gain, phase imbalance, and phase noise effects on error vector magnitude. IEEE Trans. Veh. Technol. 53(2), 443–449 (2004)
F.L. Lin, H.R. Chuang, EVM and BER simulation of an NADC-TDMA radiophone influenced by the operator’s body in urban mobile environments. Wirel. Personal Commun. 17(1), 135–147 (2001)
D.R. Pauluzzi, N.C. Beaulieu, A comparison of SNR estimation techniques for the AWGN channel. IEEE Trans. Commun. 48(10), 1681–1691 (2000)
B. Tamrakar, K. Singh, P. Kumar, Analysis and modelling of DD-DPMZM to investigate fundamental to intermodulation distortion ratio (FIMDR) against different fiber impairments for the next generation networks. J. Active Passive Electron. Dev. 16(4), 297–310 (2022)
P.R. Selvakumaran, P. Mohanraj, Miniaturized wideband implantable slotted loop antenna for biotelemetry applications. Frequenz 77, 315–321 (2023). https://doi.org/10.1515/freq-2022-0130
Article ADS MATH Google Scholar
F.M.A. Al-Zubaidi, J.D. López Cardona, D.S. Montero, C. Vázquez, Optically powered radio-over-fiber systems in support of 5G cellular networks and IoT at. IEEE 39(13), 4262–4269 (2021)
C. Vázquez, J.D. López-Cardona, D.S. Montero, I. Pérez, P.C. Lallana, F.M. A.Al- Zubaidi, Power over fiber in radio over fiber systems in 5G scenarios. IEEE Xplore 19, (2019)
T. Cseh. T. Berceli, Improved receiver techniques for Radio over Multimode fiber systems, in Proceedings of the 2013 18th European Conference on Network and Optical Communications on Optical Cabling and Infrastructure (NOC-OC&I), (2013)
E. Dadrasnia, F.R.M. Adikan, "DWDM effects of single model optical fiber in radio over fiber system", in 2nd International Conference on Electronic Computer Technology, (2010)
P.T. Dat, A. Kanno, T. Umezawa, N. Yamamoto, T. Kawanishi, "Millimeter- and terahertz-wave radio-over-fiber for 5G and beyond", in IEEE Photonics Society Summer Topical Meeting Series (SUM), (2017)
R.H. Souza, P. Kiohara, L. Ghisa, M. Guegan, V. Quintard, O.L. Coutinho, V.R. Almeida, A. Pérennou, Performance of an optically powered radio-over-fiber system exploiting raman amplification. IEEE Photon. Technol. Lett. 34(13), 667–670 (2022)
C.-T. Lin, J. Chen, P.-C. Peng, C.-F. Peng, W.-R. Peng, B.-S. Chiou, S. Chi, Hybrid optical access network integrating fiber-to-the-home and radio- over-fiber systems. IEEE Photon. Technol. Lett. 19(8), 610–612 (2007)
Article ADS MATH Google Scholar
Z. Tibenszky, H. Morath, C. Carta, F. Ellinger, Efficient 6.5 dBm 55 GHz CMOS VCO with simultaneous phase noise and tuning range optimization. Frequenz 76(9–10), 613–623 (2022). https://doi.org/10.1515/freq-2021-0248
P. Cochrane, “The future symbiosis of optical fiber and microwave radio systems,” in 19th European Microwave Conference, pp. 72–86, (1989).
H. Schmuck, R. Heidemann, R. Hofstetter, Distribution of 60 GHz signals to more than 1000 base stations. Electron. Lett. 6, 59–60 (1994)
M. Mohamed, B. Hraimel, X. Zhang, M.N. Sakib, K. Wu, Frequency quadrupler for millimeter-wave multiband OFDM ultrawideband wireless signals and distribution over fiber systems. IEEE/OSA J. Opt. Commun. Netw. 1, 428–438 (2009)
C.A. Gizelis, D.D. Vergados, A survey of pricing schemes in wireless networks. IEEE Commun. Surv. Tutor. 13, 126–145 (2011)
H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, High-speed and high-output InP-InGaAs unitravelingcarrier photodiodes. IEEE J. Sel. Top. Quantum Electron. 10, 709–727 (2004)
T.S. Rappaport, J.N. Murdock, F. Gutierrez, State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE 99, 1390–1436 (2011)
N. Pleros, K. Vyrsokinos, K. Tsagkaris, N.D. Tselikas, A 60 GHz radio-over-fiber network architecture for seamless communication with high mobility. J. Lightw. Technol. 27, 1957–1967 (2009)
A. Ng’oma, C.-T. Lin, L.-Y. W. He, W.-J. Jiang, F. Annunziata, J.J. Chen, P.-T. Shih, J. George, and S. Chi, 31 Gbps RoF system employing adaptive bit-loading OFDM modulation at 60 GHz, in Optical Fiber Communication Conference (OFC), pp. 1–3, (2011)
F.J. Velez, L.M. Correira, J.M. Brazio, Frequency reuse and system capacity in mobile broadband systems: comparison between the 40 and 60 GHz bands. Wirel. Pers. Commun. 19, 124 (2001)
H. Xu, V. Kukshya, T.S. Rappaport, Spatial and temporal characteristics of 60-GHz indoor channels. IEEE J. Sel. Areas Commun. 20, 620–630 (2002)
留言 (0)