Numerical And Experimental Insight On Lead Free MASnI3 Based Perovskite Solar Cell

G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed Planar Heterojunction Perovskite Solar cells. Adv. Funct. Mater. 24, 151–157 (2014). https://doi.org/10.1002/adfm.201302090

Article  Google Scholar 

P. Gao, M. Grätzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448–2463 (2014). https://doi.org/10.1039/C4EE00942H

Article  MATH  Google Scholar 

P.P. Boix, K. Nonomura, N. Mathews, S.G. Mhaisalkar, Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater. Today. 17, 16–23 (2014). https://doi.org/10.1016/j.mattod.2013.12.002

Article  Google Scholar 

K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 127, 619–623 (2003). https://doi.org/10.1016/S0038-1098(03)00566-0

Article  ADS  Google Scholar 

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9 (2016) 1989–1997. https://doi.org/10.1039/C5EE03874J

R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit, H.-G. Boyen, M.F. Toney, M.D. McGehee, Band Gap tuning via Lattice Contraction and Octahedral Tilting in Perovskite materials for Photovoltaics. J. Am. Chem. Soc. 139, 11117–11124 (2017). https://doi.org/10.1021/jacs.7b04981

Article  Google Scholar 

T. Duong, Y. Wu, H. Shen, J. Peng, S. Zhao, N. Wu, M. Lockrey, T. White, K. Weber, K. Catchpole, Light and elevated temperature induced degradation (LeTID) in perovskite solar cells and development of stable semi-transparent cells. Sol. Energy Mater. Sol. Cells. 188, 27–36 (2018). https://doi.org/10.1016/j.solmat.2018.08.017

Article  Google Scholar 

F. Kersten, P. Engelhart, H.-C. Ploigt, A. Stekolnikov, T. Lindner, F. Stenzel, M. Bartzsch, A. Szpeth, K. Petter, J. Heitmann, J.W. Müller, Degradation of multicrystalline silicon solar cells atemperaturend modules after illumination at elevated. Sol. Energy Mater. Sol. Cells. 142, 83–86 (2015). https://doi.org/10.1016/j.solmat.2015.06.015

Article  Google Scholar 

Y. An, A. Shang, G. Cao, S. Wu, D. Ma, X. Li, Perovskite Solar cells: Optoelectronic Simulation and optimization. Sol RRL. 2, 1800126 (2018). https://doi.org/10.1002/solr.201800126

Article  Google Scholar 

A.R. Pascoe, S. Meyer, W. Huang, W. Li, I. Benesperi, N.W. Duffy, L. Spiccia, U. Bach, Y.-B. Cheng, Enhancing the Optoelectronic performance of Perovskite Solar Cells via a textured CH 3 NH 3 PbI 3 morphology. Adv. Funct. Mater. 26, 1278–1285 (2016). https://doi.org/10.1002/adfm.201504190

Article  Google Scholar 

S.-H. Jeong, J. Park, T.-H. Han, F. Zhang, K. Zhu, J.S. Kim, M.-H. Park, M.O. Reese, S. Yoo, T.-W. Lee, Characterizing the efficiency of Perovskite Solar Cells and light-emitting diodes. Joule. 4, 1206–1235 (2020). https://doi.org/10.1016/j.joule.2020.04.007

Article  MATH  Google Scholar 

K.-G. Lim, T.-H. Han, T.-W. Lee, Engineering electrodes and metal halide perovskite materials for flexible/stretchable perovskite solar cells and light-emitting diodes. Energy Environ. Sci. 14, 2009–2035 (2021). https://doi.org/10.1039/D0EE02996C

Article  MATH  Google Scholar 

R. Wang, M. Mujahid, Y. Duan, Z. Wang, J. Xue, Y. Yang, A review of Perovskites Solar Cell Stability. Adv. Funct. Mater. 29, 1808843 (2019). https://doi.org/10.1002/adfm.201808843

Article  MATH  Google Scholar 

B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F.D. Angelis, Boyen, intrinsic thermal instability of methylammonium lead Trihalide Perovskite. Adv. Energy Mater. 5, 1500477 (2015). https://doi.org/10.1002/aenm.201500477

Article  Google Scholar 

A. Abate, Perovskite Solar cells go lead free, Joule 1 (2017) 659–664. https://doi.org/10.1016/j.joule.2017.09.007

P. Roy, Y. Raoui, A. Khare, Design and simulation of efficient tin based perovskite solar cells through optimization of selective layers: theoretical insights. Opt. Mater. 125, 112057 (2022). https://doi.org/10.1016/j.optmat.2022.112057

Article  Google Scholar 

M. Cheng, C. Zuo, Y. Wu, Z. Li, B. Xu, Y. Hua, L. Ding, Charge-transport layer engineering in perovskite solar cells. Sci. Bull. 65, 1237–1241 (2020). https://doi.org/10.1016/j.scib.2020.04.021

Article  Google Scholar 

Z. Shariatinia, Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: a review. Renew. Sustain. Energy Rev. 119, 109608 (2020). https://doi.org/10.1016/j.rser.2019.109608

Article  MATH  Google Scholar 

T. Kim, J. Lim, S. Song, Recent Progress and Challenges of Electron Transport Layers in Organic–Inorganic Perovskite Solar cells. Energies. 13, 5572 (2020). https://doi.org/10.3390/en13215572

Article  MATH  Google Scholar 

A.A. Assi, W.R. Saleh, E. Mohajerani, Investigate of TiO2 and SnO2 as electron transport layer for perovskite solar cells, in: Rhodes, Greece, 2020: p. 050039. https://doi.org/10.1063/5.0028109

K. Wang, S. Olthof, W.S. Subhani, X. Jiang, Y. Cao, L. Duan, H. Wang, M. Du, Frank) Liu, Novel inorganic electron transport layers for planar perovskite solar cells: Progress and prospective. Nano Energy. 68, 104289 (2020). https://doi.org/10.1016/j.nanoen.2019.104289

Article  Google Scholar 

T. Chen, J. Xie, P. Gao, Ultraviolet photocatalytic degradation of perovskite solar cells: Progress, challenges, and strategies. Adv. Energy Sustain. Res. 3(6), 2100218 (2022)

Article  Google Scholar 

S.S. Parui, N. Kumar, P. Tiwari, N. Tiwari, R.N. Chauhan, Zinc oxide and cupric oxide based thin films for solar cell applications, Materials Today: Proceedings 41 (2021) 233–236. https://doi.org/10.1016/j.matpr.2020.08.799

S. Huang, P. Li, J. Wang, J.C.-C. Huang, Q. Xue, N. Fu, Modification of SnO2 electron transport layer: brilliant strategies to make perovskite solar cells stronger. Chem. Eng. J. 439, 135687 (2022). https://doi.org/10.1016/j.cej.2022.135687

Article  Google Scholar 

L. Xiong, Y. Guo, J. Wen, H. Liu, G. Yang, P. Qin, G. Fang, Review on the application of SnO 2 in Perovskite Solar cells. Adv. Funct. Mater. 28, 1802757 (2018). https://doi.org/10.1002/adfm.201802757

Article  Google Scholar 

M. Abuhelaiqa, N. Shibayama, X.-X. Gao, H. Kanda, M.K. Nazeeruddin, SnO 2 /TiO 2 Electron transporting bilayers: a Route to light stable Perovskite Solar cells, ACS Appl. Energy Mater. 4, 3424–3430 (2021). https://doi.org/10.1021/acsaem.0c03185

Article  Google Scholar 

J.Y. Kim, S. Biswas, Y. Lee, H.W. Lee, J.M. Jeon, H. Kim, Highly efficient inverted polymer solar cells using an Indium Gallium Zinc Oxide Interfacial Layer. Sol RRL. 5, 2000673 (2021). https://doi.org/10.1002/solr.202000673

Article  MATH  Google Scholar 

P.K. Nayak, T. Busani, E. Elamurugu, P. Barquinha, R. Martins, Y. Hong, E. Fortunato, Zinc concentration dependence study of solution processed amorphous indium gallium zinc oxide thin film transistors using high-k dielectric. Appl. Phys. Lett. 97, 183504 (2010). https://doi.org/10.1063/1.3514249

Article  ADS  Google Scholar 

M. Jiang, Q. Niu, X. Tang, H. Zhang, H. Xu, W. Huang, J. Yao, B. Yan, R. Xia, Improving the performances of Perovskite Solar Cells via Modification of Electron Transport Layer. Polymers. 11, 147 (2019). https://doi.org/10.3390/polym11010147

Article  MATH  Google Scholar 

J. Jia, J. Wu, J. Dong, L. Fan, M. Huang, J. Lin, Z. Lan, Cadmium sulfide as an efficient electron transport material for inverted planar perovskite solar cells. Chem. Commun. 54, 3170–3173 (2018). https://doi.org/10.1039/C7CC09838C

Article  Google Scholar 

L. Huang, Z. Hu, J. Xu, K. Zhang, J. Zhang, J. Zhang, Y. Zhu, Efficient and stable planar perovskite solar cells with a non-hygroscopic small molecule oxidant doped hole transport layer. Electrochim. Acta. 196, 328–336 (2016). https://doi.org/10.1016/j.electacta.2016.03.002

Article  MATH  Google Scholar 

Z. Hawash, L.K. Ono, Y. Qi, Recent advances in Spiro-MeOTAD Hole Transport Material and its applications in Organic–Inorganic Halide Perovskite Solar cells. Adv. Mater. Interfaces. 5, 1700623 (2018). https://doi.org/10.1002/admi.201700623

Article  Google Scholar 

N.Y. Nia, F. Matteocci, L. Cina, A. Di Carlo, High-Efficiency Perovskite Solar Cell Based on Poly(3-Hexylthiophene): Influence of Molecular Weight and Mesoscopic Scaffold Layer, ChemSusChem 10 (2017) 3854–3860. https://doi.org/10.1002/cssc.201700635

S. Pitchaiya, M. Natarajan, A. Santhanam, V. Asokan, A. Yuvapragasam, V. Madurai Ramakrishnan, S.E. Palanisamy, S. Sundaram, D. Velauthapillai, A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arab. J. Chem. 13, 2526–2557 (2020). https://doi.org/10.1016/j.arabjc.2018.06.006

Article  Google Scholar 

R. Rajeswari, M. Mrinalini, S. Prasanthkumar, L. Giribabu, Emerging of Inorganic Hole transporting materials for Perovskite Solar cells. Chem. Rec. 17, 681–699 (2017). https://doi.org/10.1002/tcr.201600117

Article  Google Scholar 

Chen, W. Y., Deng, L. L., Dai, S. M., Wang, X., Tian, C. B., Zhan, X. X., ... & Zheng, L. S. (2015). Low-cost solution-processed copper iodide as an alternative to PEDOT: PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 3(38), 19353–19359. https://doi.org/10.1039/C5TA05286F.

J.A. Christians, R.C.M. Fung, P.V. Kamat, An inorganic hole conductor for Organo-Lead Halide Perovskite Solar Cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758–764 (2014). https://doi.org/10.1021/ja411014k

Article  Google Scholar 

L. Xu, Y. Li, C. Zhang, Y. Liu, C. Zheng, W. Lv, M. Li, Y. Chen, W. Huang, R. Chen, Improving the efficiency and stability of inverted perovskite solar cells by CuSCN-doped PEDOT:PSS. Sol. Energy Mater. Sol. Cells. 206, 110316 (2020). https://doi.org/10.1016/j.solmat.2019.110316

Article  Google Scholar 

S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, CuSCN-Based inverted Planar Perovskite Solar cell with an average PCE of 15.6%. Nano Lett. 15, 3723–3728 (2015). https://doi.org/10.1021/acs.nanolett.5b00116

Article 

留言 (0)

沒有登入
gif