G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed Planar Heterojunction Perovskite Solar cells. Adv. Funct. Mater. 24, 151–157 (2014). https://doi.org/10.1002/adfm.201302090
P. Gao, M. Grätzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448–2463 (2014). https://doi.org/10.1039/C4EE00942H
P.P. Boix, K. Nonomura, N. Mathews, S.G. Mhaisalkar, Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater. Today. 17, 16–23 (2014). https://doi.org/10.1016/j.mattod.2013.12.002
K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 127, 619–623 (2003). https://doi.org/10.1016/S0038-1098(03)00566-0
M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9 (2016) 1989–1997. https://doi.org/10.1039/C5EE03874J
R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit, H.-G. Boyen, M.F. Toney, M.D. McGehee, Band Gap tuning via Lattice Contraction and Octahedral Tilting in Perovskite materials for Photovoltaics. J. Am. Chem. Soc. 139, 11117–11124 (2017). https://doi.org/10.1021/jacs.7b04981
T. Duong, Y. Wu, H. Shen, J. Peng, S. Zhao, N. Wu, M. Lockrey, T. White, K. Weber, K. Catchpole, Light and elevated temperature induced degradation (LeTID) in perovskite solar cells and development of stable semi-transparent cells. Sol. Energy Mater. Sol. Cells. 188, 27–36 (2018). https://doi.org/10.1016/j.solmat.2018.08.017
F. Kersten, P. Engelhart, H.-C. Ploigt, A. Stekolnikov, T. Lindner, F. Stenzel, M. Bartzsch, A. Szpeth, K. Petter, J. Heitmann, J.W. Müller, Degradation of multicrystalline silicon solar cells atemperaturend modules after illumination at elevated. Sol. Energy Mater. Sol. Cells. 142, 83–86 (2015). https://doi.org/10.1016/j.solmat.2015.06.015
Y. An, A. Shang, G. Cao, S. Wu, D. Ma, X. Li, Perovskite Solar cells: Optoelectronic Simulation and optimization. Sol RRL. 2, 1800126 (2018). https://doi.org/10.1002/solr.201800126
A.R. Pascoe, S. Meyer, W. Huang, W. Li, I. Benesperi, N.W. Duffy, L. Spiccia, U. Bach, Y.-B. Cheng, Enhancing the Optoelectronic performance of Perovskite Solar Cells via a textured CH 3 NH 3 PbI 3 morphology. Adv. Funct. Mater. 26, 1278–1285 (2016). https://doi.org/10.1002/adfm.201504190
S.-H. Jeong, J. Park, T.-H. Han, F. Zhang, K. Zhu, J.S. Kim, M.-H. Park, M.O. Reese, S. Yoo, T.-W. Lee, Characterizing the efficiency of Perovskite Solar Cells and light-emitting diodes. Joule. 4, 1206–1235 (2020). https://doi.org/10.1016/j.joule.2020.04.007
K.-G. Lim, T.-H. Han, T.-W. Lee, Engineering electrodes and metal halide perovskite materials for flexible/stretchable perovskite solar cells and light-emitting diodes. Energy Environ. Sci. 14, 2009–2035 (2021). https://doi.org/10.1039/D0EE02996C
R. Wang, M. Mujahid, Y. Duan, Z. Wang, J. Xue, Y. Yang, A review of Perovskites Solar Cell Stability. Adv. Funct. Mater. 29, 1808843 (2019). https://doi.org/10.1002/adfm.201808843
B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F.D. Angelis, Boyen, intrinsic thermal instability of methylammonium lead Trihalide Perovskite. Adv. Energy Mater. 5, 1500477 (2015). https://doi.org/10.1002/aenm.201500477
A. Abate, Perovskite Solar cells go lead free, Joule 1 (2017) 659–664. https://doi.org/10.1016/j.joule.2017.09.007
P. Roy, Y. Raoui, A. Khare, Design and simulation of efficient tin based perovskite solar cells through optimization of selective layers: theoretical insights. Opt. Mater. 125, 112057 (2022). https://doi.org/10.1016/j.optmat.2022.112057
M. Cheng, C. Zuo, Y. Wu, Z. Li, B. Xu, Y. Hua, L. Ding, Charge-transport layer engineering in perovskite solar cells. Sci. Bull. 65, 1237–1241 (2020). https://doi.org/10.1016/j.scib.2020.04.021
Z. Shariatinia, Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: a review. Renew. Sustain. Energy Rev. 119, 109608 (2020). https://doi.org/10.1016/j.rser.2019.109608
T. Kim, J. Lim, S. Song, Recent Progress and Challenges of Electron Transport Layers in Organic–Inorganic Perovskite Solar cells. Energies. 13, 5572 (2020). https://doi.org/10.3390/en13215572
A.A. Assi, W.R. Saleh, E. Mohajerani, Investigate of TiO2 and SnO2 as electron transport layer for perovskite solar cells, in: Rhodes, Greece, 2020: p. 050039. https://doi.org/10.1063/5.0028109
K. Wang, S. Olthof, W.S. Subhani, X. Jiang, Y. Cao, L. Duan, H. Wang, M. Du, Frank) Liu, Novel inorganic electron transport layers for planar perovskite solar cells: Progress and prospective. Nano Energy. 68, 104289 (2020). https://doi.org/10.1016/j.nanoen.2019.104289
T. Chen, J. Xie, P. Gao, Ultraviolet photocatalytic degradation of perovskite solar cells: Progress, challenges, and strategies. Adv. Energy Sustain. Res. 3(6), 2100218 (2022)
S.S. Parui, N. Kumar, P. Tiwari, N. Tiwari, R.N. Chauhan, Zinc oxide and cupric oxide based thin films for solar cell applications, Materials Today: Proceedings 41 (2021) 233–236. https://doi.org/10.1016/j.matpr.2020.08.799
S. Huang, P. Li, J. Wang, J.C.-C. Huang, Q. Xue, N. Fu, Modification of SnO2 electron transport layer: brilliant strategies to make perovskite solar cells stronger. Chem. Eng. J. 439, 135687 (2022). https://doi.org/10.1016/j.cej.2022.135687
L. Xiong, Y. Guo, J. Wen, H. Liu, G. Yang, P. Qin, G. Fang, Review on the application of SnO 2 in Perovskite Solar cells. Adv. Funct. Mater. 28, 1802757 (2018). https://doi.org/10.1002/adfm.201802757
M. Abuhelaiqa, N. Shibayama, X.-X. Gao, H. Kanda, M.K. Nazeeruddin, SnO 2 /TiO 2 Electron transporting bilayers: a Route to light stable Perovskite Solar cells, ACS Appl. Energy Mater. 4, 3424–3430 (2021). https://doi.org/10.1021/acsaem.0c03185
J.Y. Kim, S. Biswas, Y. Lee, H.W. Lee, J.M. Jeon, H. Kim, Highly efficient inverted polymer solar cells using an Indium Gallium Zinc Oxide Interfacial Layer. Sol RRL. 5, 2000673 (2021). https://doi.org/10.1002/solr.202000673
P.K. Nayak, T. Busani, E. Elamurugu, P. Barquinha, R. Martins, Y. Hong, E. Fortunato, Zinc concentration dependence study of solution processed amorphous indium gallium zinc oxide thin film transistors using high-k dielectric. Appl. Phys. Lett. 97, 183504 (2010). https://doi.org/10.1063/1.3514249
M. Jiang, Q. Niu, X. Tang, H. Zhang, H. Xu, W. Huang, J. Yao, B. Yan, R. Xia, Improving the performances of Perovskite Solar Cells via Modification of Electron Transport Layer. Polymers. 11, 147 (2019). https://doi.org/10.3390/polym11010147
J. Jia, J. Wu, J. Dong, L. Fan, M. Huang, J. Lin, Z. Lan, Cadmium sulfide as an efficient electron transport material for inverted planar perovskite solar cells. Chem. Commun. 54, 3170–3173 (2018). https://doi.org/10.1039/C7CC09838C
L. Huang, Z. Hu, J. Xu, K. Zhang, J. Zhang, J. Zhang, Y. Zhu, Efficient and stable planar perovskite solar cells with a non-hygroscopic small molecule oxidant doped hole transport layer. Electrochim. Acta. 196, 328–336 (2016). https://doi.org/10.1016/j.electacta.2016.03.002
Z. Hawash, L.K. Ono, Y. Qi, Recent advances in Spiro-MeOTAD Hole Transport Material and its applications in Organic–Inorganic Halide Perovskite Solar cells. Adv. Mater. Interfaces. 5, 1700623 (2018). https://doi.org/10.1002/admi.201700623
N.Y. Nia, F. Matteocci, L. Cina, A. Di Carlo, High-Efficiency Perovskite Solar Cell Based on Poly(3-Hexylthiophene): Influence of Molecular Weight and Mesoscopic Scaffold Layer, ChemSusChem 10 (2017) 3854–3860. https://doi.org/10.1002/cssc.201700635
S. Pitchaiya, M. Natarajan, A. Santhanam, V. Asokan, A. Yuvapragasam, V. Madurai Ramakrishnan, S.E. Palanisamy, S. Sundaram, D. Velauthapillai, A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arab. J. Chem. 13, 2526–2557 (2020). https://doi.org/10.1016/j.arabjc.2018.06.006
R. Rajeswari, M. Mrinalini, S. Prasanthkumar, L. Giribabu, Emerging of Inorganic Hole transporting materials for Perovskite Solar cells. Chem. Rec. 17, 681–699 (2017). https://doi.org/10.1002/tcr.201600117
Chen, W. Y., Deng, L. L., Dai, S. M., Wang, X., Tian, C. B., Zhan, X. X., ... & Zheng, L. S. (2015). Low-cost solution-processed copper iodide as an alternative to PEDOT: PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 3(38), 19353–19359. https://doi.org/10.1039/C5TA05286F.
J.A. Christians, R.C.M. Fung, P.V. Kamat, An inorganic hole conductor for Organo-Lead Halide Perovskite Solar Cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758–764 (2014). https://doi.org/10.1021/ja411014k
L. Xu, Y. Li, C. Zhang, Y. Liu, C. Zheng, W. Lv, M. Li, Y. Chen, W. Huang, R. Chen, Improving the efficiency and stability of inverted perovskite solar cells by CuSCN-doped PEDOT:PSS. Sol. Energy Mater. Sol. Cells. 206, 110316 (2020). https://doi.org/10.1016/j.solmat.2019.110316
S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, CuSCN-Based inverted Planar Perovskite Solar cell with an average PCE of 15.6%. Nano Lett. 15, 3723–3728 (2015). https://doi.org/10.1021/acs.nanolett.5b00116
留言 (0)