M.R. Momota, Md. Rabiul Hasan, Hollow-core silver coated photonic crystal fiber plasmonic sensor. Opt. Mater. 76, 287–294 (2018). https://doi.org/10.1016/j.optmat.2017.12.049
C.E. Berger, J. Greve, Differential SPR immune sensing. Sensor. Actuator. B Chem. 63(1), 103–108 (2000). https://doi.org/10.1016/S0925-4005(00)00307-5
Y. Fang, Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev. Technol. 4(5), 583–595 (2006). https://doi.org/10.1089/adt.2006.4.583
J. Homola, S.S. Ye, J. Goglitz, Surface plasmon resonance sensors: a review. Sens. Actuators B Chem. 54(1–2), 3–15 (1999). https://doi.org/10.1016/S0925-4005(98)00321-9
Article ADS MATH Google Scholar
J. Banerjee, M. Bera, M. Ray, Theoretical differential phase analysis for characterization of aqueous solution using surface Plasmon resonance. Plasmatic. 12(6), 1787–1796 (2017). https://doi.org/10.1007/s11468-016-0446-4
B. Hamed, A.R. Abbas, M.T. Al-Obaidi, Investigation of concentration influence on electronic coefficients of He: Ne plasma by predicting a mathematical model. J. Eng. Sci. Technol. 17(2), 1550–1560 (2022)
P. Englebienne, A. Van Hoonacker, M. Verhas, Surface plasmon resonance: principles, methods and applications in biomedical sciences. J. Spectrosc. 17, 255–273 (2003). https://doi.org/10.1155/2003/372913
R. Kumar, S. Pal, A. Verma, Y. Prajapati, J. Saini, Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene. Superlatt. Microstruct. 145, 106591 (2020)
R. Kumar, S. Agarwal, S. Pal, Y.K. Prajapati, J. Saini, Enhanced refractive index sensing using a surface plasmon resonance sensor with heterostructure. Micro Nanostruct. 183, 207656 (2023)
Kumar R, Agarwal S, Pal S, Verma A, Prajapati YK (2023) Refractive index sensing using MXene mediated surface plasmon resonance sensor in visible to near infrared regime. Measurement 113682
B. Song, D. Li, W. Qi, M. Elstner, C. Fan, H. Fang, Graphene on Au (111): a highly conductive material with excellent adsorption properties for high-resolution bio/nano-detection and identification. ChemPhysChem 11(3), 585–589 (2010)
B. Karki, A. Jha, A. Pal, V. Srivastava, Sensitivity enhancement of refractive index-based surface plasmon resonance sensor for glucose detection. Opt. Quant. Electron. (2022). https://doi.org/10.1007/s11082-022-04004-z
H. Xu, L. Wu, X. Dai, Y. Gao, Y. Xiang, An ultra-high sensitivity surface plasmon resonance sensor based on graphene-aluminum-graphene sandwich-like structure. J. Appl. Phys. 120, 053101 (2016)
Fouad, S., Naseer, S., Jamal, Z., Poopalan, P. 2016. Enhanced sensitivity of surface plasmon resonance sensor based on bilayers of silver-barium titanate. Жypнaл нaнo-тa eлeктpoннoї фiзики, 04085–1–04085–5.
S. Fouad, N. Sabri, Z. Jamal, P. Poopalan, Surface plasmon resonance sensor sensitivity enhancement using gold-dielectric material. Int. J. Nanoelectron. Mater. 10, 149–158 (2017)
A. Nisha, P. Maheswari, P. Anbarasan, K. Rajesh, Z. Jaroszewicz, Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni). Opt. Quant. Electron. 51, 19 (2019)
Z. Lin, S. Chen, C. Lin, Sensitivity improvement of a surface plasmon resonance sensor based on two-dimensional materials hybrid structure in visible region: a theoretical study. Sensors 20, 2445 (2020)
Article ADS MATH Google Scholar
F. Kadhum, S. Kafi, A. Saeed, A. Al-Zuky, A. Al-Saleh, Simulation of surface plasmon resonance (SPR) of silver with titanium oxide as a bi-layer biosensor. Sci J. King Faisal Univ. Basic Appl. Sci. (2021). https://doi.org/10.37575/b/sci/210046
F.J. Kadhum, A.A. Saeed, M.F. Al-kadhemy, A.A. Al-Zuky, A.H. Al-Saleh, Theoretical biosensor design for gold- PVA surface plasmon resonance layers. Iraq J. Sci. 62(11), 4232–4239 (2021)
B. Karki, A. Jha, A. Pal, V. Srivastava, Sensitivity enhancement of refractive index-based surface plasmon resonance sensor for glucose detection. Opt. Quantum Electron. (2022). https://doi.org/10.1007/s11082-022-04004-z
A.M. Alsaad, M. Al-Hmoud, M.W. Marashdeh, M.J. Aljaafreh, T.M. Rababah, Design and modeling of a novel highly sensitive surface plasmon resonance sensor applying tin selenide and graphene for cancer detection. Plasmonics 19(4), 2061–2069 (2023). https://doi.org/10.1007/s11468-023-02144-w
Q. Ouyang, S. Zeng, L. Jiang, L. Hong, X. Gaixia, X.-Q. Dinh, J. Qian, S. He, Q. Junle, P. Coquet, K.-T. Yong, Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep. (2016). https://doi.org/10.1038/srep28190
A. Shalabney, I. Abdulhalim, Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev. 5(4), 571–606 (2011). https://doi.org/10.1002/lpor.201000009
B. Bhowmik, V. Manjuladevi, R. Gupta, P. Bhattacharyya, Highly selective low-temperature acetone sensor based on hierarchical 3-D TiO 2 nanoflowers. IEEE Sens. J. 16(10), 3488–3495 (2016)
Article ADS MATH Google Scholar
G. Mohanty, J. Akhtar, B.K. Sahoo, Efect of semiconductor on sensitivity of a graphene-based surface plasmon resonance biosensor. Plasmonics 11(1), 189–196 (2016). https://doi.org/10.1007/s11468-015-0033-0
Y. Deng, G. Liu, Surface plasmons resonance detection based on the attenuated total reflection geometry. Proc. Eng. 7, 432–435 (2010)
留言 (0)