Tartaglia M, Aoki Y, Gelb BD (2022) The molecular genetics of RASopathies: an update on novel disease genes and new disorders. Am J Med Genet C Semin Med Genet 190(4):425–439. https://doi.org/10.1002/ajmg.c.32012
Article CAS PubMed PubMed Central Google Scholar
Motta M, Pannone L, Pantaleoni F et al (2020) Enhanced MAPK1 function causes a neurodevelopmental disorder within the RASopathy clinical spectrum. Am J Hum Genet 107(3):499–513. https://doi.org/10.1016/j.ajhg.2020.06.018
Article CAS PubMed PubMed Central Google Scholar
Abe T, Umeki I, Kanno SI, Inoue SI, Niihori T, Aoki Y (2020) LZTR1 facilitates polyubiquitination and degradation of RAS-GTPases. Cell Death Differ 27(3):1023–1035. https://doi.org/10.1038/s41418-019-0395-5
Article CAS PubMed Google Scholar
Kouz K, Lissewski C, Spranger S et al (2016) Genotype and phenotype in patients with Noonan syndrome and a RIT1 mutation. Genet Med 18(12):1226–1234. https://doi.org/10.1038/gim.2016.32
Article CAS PubMed Google Scholar
Gripp KW, Aldinger KA, Bennett JT et al (2016) A novel rasopathy caused by recurrent de novo missense mutations in PPP1CB closely resembles Noonan syndrome with loose anagen hair. Am J Med Genet A 170(9):2237–2247. https://doi.org/10.1002/ajmg.a.37781
Article CAS PubMed PubMed Central Google Scholar
Weber SM, Carroll SL (2021) The role of R-Ras proteins in normal and pathologic migration and morphologic change. Am J Pathol 191(9):1499–1510. https://doi.org/10.1016/j.ajpath.2021.05.008
Article CAS PubMed PubMed Central Google Scholar
Lorenzo C, McCormick F (2020) SPRED proteins and their roles in signal transduction, development, and malignancy. Genes Dev 34(21–22):1410–1421. https://doi.org/10.1101/gad.341222.120
Article CAS PubMed PubMed Central Google Scholar
Zenker M (2011) Clinical manifestations of mutations in RAS and related intracellular signal transduction factors. Curr Opin Pediatr 23(4):443–451. https://doi.org/10.1097/MOP.0b013e32834881dd
Article CAS PubMed Google Scholar
Rojnueangnit K, Xie J, Gomes A, et al. High ıncidence of Noonan syndrome features ıncluding short stature and pulmonic stenosis in patients carrying NF1 missense mutations affecting p.Arg1809: genotype-phenotype correlation. Hum Mutat. 2015;36(11):1052–1063. https://doi.org/10.1002/humu.22832
Pagnamenta AT, Kaisaki PJ, Bennett F et al (2019) Delineation of dominant and recessive forms of LZTR1-associated Noonan syndrome. Clin Genet 95(6):693–703. https://doi.org/10.1111/cge.13533
Article CAS PubMed PubMed Central Google Scholar
Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the american college of medical Genetics and genomics and the association for molecular pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30
Article PubMed PubMed Central Google Scholar
Papadopoulos G, Papadopoulou A, Kosma K et al (2022) Molecular and clinical profile of patients referred as Noonan or Noonan-like syndrome in Greece: a cohort of 86 patients. Eur J Pediatr 181(10):3691–3700. https://doi.org/10.1007/s00431-022-04574-w
Article CAS PubMed Google Scholar
Longoni L, D’Apolito V, Cianci P, Selicorni A (2012) Omphalocele in a patient with Noonan syndrome. Clin Dysmorphol 21(4):215–217. https://doi.org/10.1097/MCD.0b013e3283590a5a
Schönfeld M, Selig M, Russo A et al (2020) Rapid detection by hydrops panel of Noonan syndrome with PTPN11 mutation (p.Thr73Ile) and persistent thrombocytopenia. MolGenetGenomicMed 8(5):e1174. https://doi.org/10.1002/mgg3.117
Pootrakul L, Nazareth MR, Cheney RT, Grassi MA (2014) Lymphangiomacircumscriptum of the vulva in a patient with Noonan syndrome. Cutis 93(6):297-300.9
Schirra A, Hadaschik E, Streit E (2018) Lymphangiomacircumscriptum of the vulva in a patient with Noonan syndrome. J DtschDermatolGes 16(1):62–63. https://doi.org/10.1111/ddg.13385
Lepri F, De Luca A, Stella L et al (2011) SOS1 mutations in Noonan syndrome: molecular spectrum, structural insights on pathogenic effects, and genotype-phenotype correlations. Hum Mutat 32(7):760–772. https://doi.org/10.1002/humu.21492
Article CAS PubMed PubMed Central Google Scholar
Dong X, Fan P, Tian T et al (2017) Recent advancements in the molecular genetics of left ventricular noncompaction cardiomyopathy. ClinChimActa 465:40–44. https://doi.org/10.1016/j.cca.2016.12.013
Ayaz E, Yıldırım R, Çelebi C, Ozalkak S (2023) Noonan syndrome: neuroimaging findings and morphometric analysis of the cranium base and posterior fossa in children. J Neuroimaging 33(2):318–327. https://doi.org/10.1111/jon.13075
Göçmen R, Oğuz KK (2008) Mega corpus callosum and caudate nuclei with bilateral hippocampal malformation. DiagnIntervRadiol 14(2):69–71
Schupper A, Konen O, Halevy A, Cohen R, Aharoni S, Shuper A (2017) Thick corpus callosum in children. J ClinNeurol 13(2):170–174. https://doi.org/10.3988/jcn.2017.13.2.170
Yamamoto GL, Aguena M, Gos M, Hung C, Pilch J, Fahiminiya S, Abramowicz A, Cristian I, Buscarilli M, Naslavsky MS, Malaquias AC, Zatz M, Bodamer O, Majewski J, Jorge AA, Pereira AC, Kim CA, Passos-Bueno MR, Bertola DR (2015) Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome. J Med Genet 52(6):413–421. https://doi.org/10.1136/jmedgenet-2015-103018
Article CAS PubMed Google Scholar
Kobayashi T, Aoki Y, Niihori T et al (2010) Molecular and clinical analysis of RAF1 in Noonan syndrome and related disorders: dephosphorylation of serine 259 as the essential mechanism formutant activation. Hum Mutat 31(3):284–294. https://doi.org/10.1002/humu.21187
Article CAS PubMed Google Scholar
Yaoita M, Niihori T, Mizuno S et al (2016) Spectrum of mutations and genotype-phenotype analysis in Noonan syndrome patients with RIT1 mutations. Hum Genet 135(2):209–222. https://doi.org/10.1007/s00439-015-1627-5
Article CAS PubMed Google Scholar
Hussain MR, Baig M, Mohamoud HS et al (2015) BRAF gene: from human cancers to developmental syndromes. Saudi J BiolSci 22(4):359–373. https://doi.org/10.1016/j.sjbs.2014.10.002
Rauen KA (2007) Cardiofaciocutaneous syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., eds. GeneReviews®. Seattle (WA): University of Washington, Seattle
Flex E, Jaiswal M, Pantaleoni F et al (2014) Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Hum MolGenet. 23(16):4315–4327. https://doi.org/10.1093/hmg/ddu148
Koç A, Kulalı MA, Tüzün F, Bora E, Bozkaya ÖG (2019). Presentation of a case with Noonan syndrome presenting with atypical findings and a rare pathogenic variation [poster presentation]. 4th National Pediatric Genetics Congress. Ankara, Turkey. https://motto.tc/siteler/www.cocukgenetik2019.com/cocuk-genetik-bildiri-kitabi.pdf
Gripp KW, Morse LA, Axelrad M et al (2019) Costello syndrome: clinical phenotype, genotype, and management guidelines. Am J MedGenet A 179(9):1725–1744. https://doi.org/10.1002/ajmg.a.61270
Gripp KW, Weaver KN. HRAS-related Costello syndrome. 2006 Aug 29 [updated 2023 Dec 21]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2024.
van der Burgt I, Kupsky W, Stassou S et al (2007) Myopathy caused by HRAS germline mutations: implications for disturbed myogenic differentiation in the presence of constitutive HRas activation. J MedGenet 44(7):459–462. https://doi.org/10.1136/jmg.2007.049270
Shankar SP, Fallurin R, Watson T et al (2022) Ophthalmic manifestations in Costello syndrome caused by Ras pathway dysregulation during development. Ophthalmic Genet 43(1):48–57. https://doi.org/10.1080/13816810.2021.1978103
Article CAS PubMed Google Scholar
Castellanos E, Rosas I, Negro A et al (2020) Mutational spectrum by phenotype: panel-based NGS testing of patients with clinical suspicion of RASopathy and children with multiple café-au-lait macules. Clin Genet 97(2):264–275. https://doi.org/10.1111/cge.13649
留言 (0)