Digital insights into Pseudomonas aeruginosa PBH03: in-silico analysis for genomic toolbox and unraveling cues for heavy metal bioremediation

Abdel-Mawgoud A, Hausmann R, Lépine F, et al (2011) Rhamnolipids: detection, analysis, biosynthesis, genetic regulation, and bioengineering of production

Abo-Alkasem MI, Hassan NH (2023) Abo Elsoud MM (2023) Microbial bioremediation as a tool for the removal of heavy metals. Bull Natl Res Centre 47:1–15. https://doi.org/10.1186/S42269-023-01006-Z

Article  Google Scholar 

Aziz RK, Bartels D, Best A et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom. https://doi.org/10.1186/1471-2164-9-75

Article  Google Scholar 

Bardavid RE, Oren A (2012) The amino acid composition of proteins from anaerobic halophilic bacteria of the order Halanaerobiales. Extremophiles 16:567–572. https://doi.org/10.1007/s00792-012-0455-y

Article  CAS  Google Scholar 

Blin K, Shaw S, Kloosterman AM et al (2021) antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucl Acids Res 49:W29–W35. https://doi.org/10.1093/NAR/GKAB335

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bosi E, Donati B, Galardini M et al (2015) MEDUSA: a multi-draft based scaffolder. Bioinformatics. https://doi.org/10.1093/bioinformatics/btv171

Article  PubMed  Google Scholar 

Bosire EM, Blank LM, Rosenbaum MA, Müller V (2016a) Strain- and substrate-dependent redox mediator and electricity production by pseudomonas aeruginosa. Appl Environ Microbiol 82:5026–5038. https://doi.org/10.1128/AEM.01342-16

Article  CAS  PubMed  PubMed Central  Google Scholar 

Catucci G, Valetti F, Sadeghi SJ, Gilardi G (2020) Biochemical features of dye-decolorizing peroxidases: current impact on lignin degradation. Biotechnol Appl Biochem 67:751–759. https://doi.org/10.1002/BAB.2015

Article  CAS  PubMed  Google Scholar 

Chang J-S, Law W-S (1998) Development of microbial mercury detoxification processes using mercury-hyperresistant strain of Pseudomonas aeruginosa PU21. Biotechnol Bioeng 57:462–470. https://doi.org/10.1002/(SICI)1097-0290(19980220)57:4

Article  CAS  PubMed  Google Scholar 

Chong H (2017) Li Q (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Factories 16:1–12. https://doi.org/10.1186/S12934-017-0753-2

Article  Google Scholar 

Chug R, Mathur S, Kothari SL et al (2021) Maximizing EPS production from Pseudomonas aeruginosa and its application in Cr and Ni sequestration. Biochem Biophys Rep 26:100972. https://doi.org/10.1016/j.bbrep.2021.100972

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clarke PH (1982) The metabolic versatility of pseudomonads. Antonie Leeuwenhoek 48:105–130. https://doi.org/10.1007/BF00405197

Article  CAS  PubMed  Google Scholar 

Coleman JP, Smith CJ (2014) Microbial cell wall synthesis and permeability. Ref Module Biomed Sci. https://doi.org/10.1016/B978-0-12-801238-3.05144-8

Article  Google Scholar 

Craig K, Johnson BR, Grunden A (2021) Leveraging pseudomonas stress response mechanisms for industrial applications. Front Microbiol 12:660134. https://doi.org/10.3389/FMICB.2021.660134/BIBTEX

Article  PubMed  PubMed Central  Google Scholar 

Dash HR, Das S (2012) Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegrad 75:207–213. https://doi.org/10.1016/j.ibiod.2012.07.023

Article  CAS  Google Scholar 

De J, Leonhäuser J, Vardanyan L (2014) Removal of mercury in fixed-bed continuous upflow reactors by mercury-resistant bacteria and effect of sodium chloride on their performance. Qscience Connect 2014:17. https://doi.org/10.5339/CONNECT.2014.17

Article  Google Scholar 

DeBritto S, Gajbar TD, Satapute P et al (2020) Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-58335-6

Article  CAS  Google Scholar 

dos Santos Melo-Nascimento AO, Anna BMMS, Gonçalves CC et al (2020) Complete genome reveals genetic repertoire and potential metabolic strategies involved in lignin degradation by environmental ligninolytic Klebsiella variicola P1CD1. PLoS ONE 15:e0243739. https://doi.org/10.1371/JOURNAL.PONE.0243739

Article  PubMed  PubMed Central  Google Scholar 

Bosire EM, Blank LM (2016b) Strain- and substrate-dependent redox mediator and electricity production by Pseudomonas aeruginosa. Appl Environ Microbiol 15:467–469. https://doi.org/10.1097/00006534-196707000-00027

Article  Google Scholar 

Fischer S, Klockgether J, Morán Losada P et al (2016) Intraclonal genome diversity of the major Pseudomonas aeruginosa clones C and PA14. Environ Microbiol Rep 8:227–234. https://doi.org/10.1111/1758-2229.12372/SUPPINFO

Article  CAS  PubMed  Google Scholar 

Fox-Moon SM, Shirtliff ME (2015) Urinary tract infections caused by proteus mirabilis. Mol Med Microbiol. https://doi.org/10.1016/B978-0-12-397169-2.00077-9

Article  Google Scholar 

Gaur VK, Sharma P, Gupta S et al (2022) Opportunities and challenges in omics approaches for biosurfactant production and feasibility of site remediation: strategies and advancements. Environ Technol Innov 25:102132. https://doi.org/10.1016/J.ETI.2021.102132

Article  CAS  Google Scholar 

Glasser NR, Kern SE, Newman DK (2014) Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force. Mol Microbiol 92:399–412. https://doi.org/10.1111/mmi.12566

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grant JR, Stothard P (2008) The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181. https://doi.org/10.1093/NAR/GKN179

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hassen A, Saidi N, Cherif M, Boudabous A (1998) Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis. Bioresour Technol 65:73–82. https://doi.org/10.1016/S0960-8524(98)00011-X

Article  CAS  Google Scholar 

Imron MF, Kurniawan SB, Abdullah SRS (2021a) Resistance of bacteria isolated from leachate to heavy metals and the removal of Hg by Pseudomonas aeruginosa strain FZ-2 at different salinity levels in a batch biosorption system. Sustain Environ Res. https://doi.org/10.1186/s42834-021-00088-6

Article  Google Scholar 

Imron MF, Kurniawan SB, Abdullah SRS (2021b) Resistance of bacteria isolated from leachate to heavy metals and the removal of Hg by Pseudomonas aeruginosa strain FZ-2 at different salinity levels in a batch biosorption system. Sustain Environ Res 31:1–13. https://doi.org/10.1186/S42834-021-00088-6/TABLES/5

Article  Google Scholar 

Khandelwal H, Mutyala S, Kim M et al (2022) Colorimetric isolation of a novel electrochemically active Pseudomonas strain using tungsten nanorods for bioelectrochemical applications. Bioelectrochemistry 146:108136. https://doi.org/10.1016/j.bioelechem.2022.108136

Article  CAS  PubMed  Google Scholar 

Kim T, Stogios PJ, Khusnutdinova AN et al (2020) Rational engineering of 2-deoxyribose-5-phosphate aldolases for the biosynthesis of (R)-1,3-butanediol. J Biol Chem 295:597–609. https://doi.org/10.1074/JBC.RA119.011363/ATTACHMENT/A5A78260-144E-40F5-AD93-52C65A992FF7/MMC1.PDF

Article  CAS  PubMed  Google Scholar 

Klockgether J, Cramer N, Wiehlmann L et al (2011) Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol 2:1–18. https://doi.org/10.3389/fmicb.2011.00150

Article  CAS  Google Scholar 

Kotwal DR, Shewale NB, Tambat US et al (2018) Bioremediation of mercury using mercury resistant bacteria. Res J Life Sci Bioinf Pharm Chem Sci. https://doi.org/10.26479/2018.0402.11

Article  Google Scholar 

Larsen MV, Cosentino S, Rasmussen S et al (2012) Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50:1355–1361. https://doi.org/10.1128/JCM.06094-11

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif