Abdel-Mawgoud A, Hausmann R, Lépine F, et al (2011) Rhamnolipids: detection, analysis, biosynthesis, genetic regulation, and bioengineering of production
Abo-Alkasem MI, Hassan NH (2023) Abo Elsoud MM (2023) Microbial bioremediation as a tool for the removal of heavy metals. Bull Natl Res Centre 47:1–15. https://doi.org/10.1186/S42269-023-01006-Z
Aziz RK, Bartels D, Best A et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom. https://doi.org/10.1186/1471-2164-9-75
Bardavid RE, Oren A (2012) The amino acid composition of proteins from anaerobic halophilic bacteria of the order Halanaerobiales. Extremophiles 16:567–572. https://doi.org/10.1007/s00792-012-0455-y
Blin K, Shaw S, Kloosterman AM et al (2021) antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucl Acids Res 49:W29–W35. https://doi.org/10.1093/NAR/GKAB335
Article CAS PubMed PubMed Central Google Scholar
Bosi E, Donati B, Galardini M et al (2015) MEDUSA: a multi-draft based scaffolder. Bioinformatics. https://doi.org/10.1093/bioinformatics/btv171
Bosire EM, Blank LM, Rosenbaum MA, Müller V (2016a) Strain- and substrate-dependent redox mediator and electricity production by pseudomonas aeruginosa. Appl Environ Microbiol 82:5026–5038. https://doi.org/10.1128/AEM.01342-16
Article CAS PubMed PubMed Central Google Scholar
Catucci G, Valetti F, Sadeghi SJ, Gilardi G (2020) Biochemical features of dye-decolorizing peroxidases: current impact on lignin degradation. Biotechnol Appl Biochem 67:751–759. https://doi.org/10.1002/BAB.2015
Article CAS PubMed Google Scholar
Chang J-S, Law W-S (1998) Development of microbial mercury detoxification processes using mercury-hyperresistant strain of Pseudomonas aeruginosa PU21. Biotechnol Bioeng 57:462–470. https://doi.org/10.1002/(SICI)1097-0290(19980220)57:4
Article CAS PubMed Google Scholar
Chong H (2017) Li Q (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Factories 16:1–12. https://doi.org/10.1186/S12934-017-0753-2
Chug R, Mathur S, Kothari SL et al (2021) Maximizing EPS production from Pseudomonas aeruginosa and its application in Cr and Ni sequestration. Biochem Biophys Rep 26:100972. https://doi.org/10.1016/j.bbrep.2021.100972
Article CAS PubMed PubMed Central Google Scholar
Clarke PH (1982) The metabolic versatility of pseudomonads. Antonie Leeuwenhoek 48:105–130. https://doi.org/10.1007/BF00405197
Article CAS PubMed Google Scholar
Coleman JP, Smith CJ (2014) Microbial cell wall synthesis and permeability. Ref Module Biomed Sci. https://doi.org/10.1016/B978-0-12-801238-3.05144-8
Craig K, Johnson BR, Grunden A (2021) Leveraging pseudomonas stress response mechanisms for industrial applications. Front Microbiol 12:660134. https://doi.org/10.3389/FMICB.2021.660134/BIBTEX
Article PubMed PubMed Central Google Scholar
Dash HR, Das S (2012) Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegrad 75:207–213. https://doi.org/10.1016/j.ibiod.2012.07.023
De J, Leonhäuser J, Vardanyan L (2014) Removal of mercury in fixed-bed continuous upflow reactors by mercury-resistant bacteria and effect of sodium chloride on their performance. Qscience Connect 2014:17. https://doi.org/10.5339/CONNECT.2014.17
DeBritto S, Gajbar TD, Satapute P et al (2020) Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-58335-6
dos Santos Melo-Nascimento AO, Anna BMMS, Gonçalves CC et al (2020) Complete genome reveals genetic repertoire and potential metabolic strategies involved in lignin degradation by environmental ligninolytic Klebsiella variicola P1CD1. PLoS ONE 15:e0243739. https://doi.org/10.1371/JOURNAL.PONE.0243739
Article PubMed PubMed Central Google Scholar
Bosire EM, Blank LM (2016b) Strain- and substrate-dependent redox mediator and electricity production by Pseudomonas aeruginosa. Appl Environ Microbiol 15:467–469. https://doi.org/10.1097/00006534-196707000-00027
Fischer S, Klockgether J, Morán Losada P et al (2016) Intraclonal genome diversity of the major Pseudomonas aeruginosa clones C and PA14. Environ Microbiol Rep 8:227–234. https://doi.org/10.1111/1758-2229.12372/SUPPINFO
Article CAS PubMed Google Scholar
Fox-Moon SM, Shirtliff ME (2015) Urinary tract infections caused by proteus mirabilis. Mol Med Microbiol. https://doi.org/10.1016/B978-0-12-397169-2.00077-9
Gaur VK, Sharma P, Gupta S et al (2022) Opportunities and challenges in omics approaches for biosurfactant production and feasibility of site remediation: strategies and advancements. Environ Technol Innov 25:102132. https://doi.org/10.1016/J.ETI.2021.102132
Glasser NR, Kern SE, Newman DK (2014) Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force. Mol Microbiol 92:399–412. https://doi.org/10.1111/mmi.12566
Article CAS PubMed PubMed Central Google Scholar
Grant JR, Stothard P (2008) The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181. https://doi.org/10.1093/NAR/GKN179
Article CAS PubMed PubMed Central Google Scholar
Hassen A, Saidi N, Cherif M, Boudabous A (1998) Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis. Bioresour Technol 65:73–82. https://doi.org/10.1016/S0960-8524(98)00011-X
Imron MF, Kurniawan SB, Abdullah SRS (2021a) Resistance of bacteria isolated from leachate to heavy metals and the removal of Hg by Pseudomonas aeruginosa strain FZ-2 at different salinity levels in a batch biosorption system. Sustain Environ Res. https://doi.org/10.1186/s42834-021-00088-6
Imron MF, Kurniawan SB, Abdullah SRS (2021b) Resistance of bacteria isolated from leachate to heavy metals and the removal of Hg by Pseudomonas aeruginosa strain FZ-2 at different salinity levels in a batch biosorption system. Sustain Environ Res 31:1–13. https://doi.org/10.1186/S42834-021-00088-6/TABLES/5
Khandelwal H, Mutyala S, Kim M et al (2022) Colorimetric isolation of a novel electrochemically active Pseudomonas strain using tungsten nanorods for bioelectrochemical applications. Bioelectrochemistry 146:108136. https://doi.org/10.1016/j.bioelechem.2022.108136
Article CAS PubMed Google Scholar
Kim T, Stogios PJ, Khusnutdinova AN et al (2020) Rational engineering of 2-deoxyribose-5-phosphate aldolases for the biosynthesis of (R)-1,3-butanediol. J Biol Chem 295:597–609. https://doi.org/10.1074/JBC.RA119.011363/ATTACHMENT/A5A78260-144E-40F5-AD93-52C65A992FF7/MMC1.PDF
Article CAS PubMed Google Scholar
Klockgether J, Cramer N, Wiehlmann L et al (2011) Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol 2:1–18. https://doi.org/10.3389/fmicb.2011.00150
Kotwal DR, Shewale NB, Tambat US et al (2018) Bioremediation of mercury using mercury resistant bacteria. Res J Life Sci Bioinf Pharm Chem Sci. https://doi.org/10.26479/2018.0402.11
Larsen MV, Cosentino S, Rasmussen S et al (2012) Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50:1355–1361. https://doi.org/10.1128/JCM.06094-11
留言 (0)