A computational model of auditory chirp-velocity sensitivity and amplitude-modulation tuning in inferior colliculus neurons

Adams, J. C. (1997). Projections from octopus cells of the posteroventral cochlear nucleus to the ventral nucleus of the lateral lemniscus in cat and human. Aud Neurosci, 3(4), 335–350.

Google Scholar 

Andoni, S., Li, N., & Pollak, G. D. (2007). Spectrotemporal receptive fields in the inferior colliculus revealing selectivity for spectral motion in conspecific vocalizations. The Journal of Neuroscience, 27(18), 4882–4893. https://doi.org/10.1523/jneurosci.4342-06.2007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bal, R., & Oertel, D. (2001). Potassium currents in octopus cells of the mammalian cochlear nucleus. Journal of Neurophysiology, 86(5), 2299–2311. https://doi.org/10.1152/jn.2001.86.5.2299

Article  CAS  PubMed  Google Scholar 

Cai, H., Carney, L. H., & Colburn, H. S. (1998). A model for binaural response properties of inferior colliculus neurons. I. A model with interaural time difference-sensitive excitatory and inhibitory inputs. The Journal of the Acoustical Society of America, 103(1), 475–493. https://doi.org/10.1121/1.421100

Article  CAS  PubMed  Google Scholar 

Carney, L. H., Li, T., & McDonough, J. M. (2015). Speech coding in the brain: representation of vowel formants by midbrain neurons tuned to sound fluctuations. Eneuro, 2(4), ENEURO.0004-0015.2015. https://doi.org/10.1523/eneuro.0004-15.2015

Article  Google Scholar 

Colburn, H. S. (1973). Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination. The Journal of the Acoustical Society of America, 54(6), 1458–1470. https://doi.org/10.1121/1.1914445

Article  CAS  PubMed  Google Scholar 

Covey, E., & Casseday, J. (1991). The monaural nuclei of the lateral lemniscus in an echolocating bat: Parallel pathways for analyzing temporal features of sound. The Journal of Neuroscience, 11(11), 3456–3470. https://doi.org/10.1523/jneurosci.11-11-03456.1991

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farhadi, A., Jennings, S. G., Strickland, E. A., & Carney, L. H. (2023). Subcortical auditory model including efferent dynamic gain control with inputs from cochlear nucleus and inferior colliculus. The Journal of the Acoustical Society of America, 154(6), 3644–3659. https://doi.org/10.1121/10.0022578

Article  PubMed  Google Scholar 

Fuzessery, Z. M., & Hall, J. C. (1996). Role of GABA in shaping frequency tuning and creating FM sweep selectivity in the inferior colliculus. Journal of Neurophysiology, 76(2), 1059–1073. https://doi.org/10.1152/jn.1996.76.2.1059

Article  CAS  PubMed  Google Scholar 

Gittelman, J. X., Li, N., & Pollak, G. D. (2009). Mechanisms underlying directional selectivity for frequency-modulated sweeps in the inferior colliculus revealed by in vivo whole-cell recordings. The Journal of Neuroscience, 29(41), 13030–13041. https://doi.org/10.1523/jneurosci.2477-09.2009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Godfrey, D. A., Kiang, N. Y. S., & Norris, B. E. (1975). Single unit activity in the posteroventral cochlear nucleus of the cat. Journal of Comparative Neurology, 162(2), 247–268. https://doi.org/10.1002/cne.901620206

Article  CAS  PubMed  Google Scholar 

Golding, N., Robertson, D., & Oertel, D. (1995). Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision. The Journal of Neuroscience, 15(4), 3138–3153. https://doi.org/10.1523/jneurosci.15-04-03138.1995

Article  CAS  PubMed  PubMed Central  Google Scholar 

Golding, N. L., Ferragamo, M. J., & Oertel, D. (1999). Role of intrinsic conductances underlying responses to transients in octopus cells of the cochlear nucleus. The Journal of Neuroscience, 19(8), 2897–2905. https://doi.org/10.1523/jneurosci.19-08-02897.1999

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gordon, M., & O’Neill, W. E. (1998). Temporal processing across frequency channels by FM selective auditory neurons can account for FM rate selectivity. Hearing Research, 122(1), 97–108. https://doi.org/10.1016/S0378-5955(98)00087-2

Article  CAS  PubMed  Google Scholar 

Guest, D. R., & Carney, L. H. (2023). A fast and flexible approximation of power-law adaptation for auditory computational models. bioRxiv, 2023.2011.2030.569467. https://doi.org/10.1101/2023.11.30.569467

Heinz, M. G., Colburn, H. S., & Carney, L. H. (2001a). Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve. Neural Computation, 13(10), 2273–2316. https://doi.org/10.1162/089976601750541804

Article  CAS  PubMed  Google Scholar 

Heinz, M. G., Colburn, H. S., & Carney, L. H. (2001b). Evaluating auditory performance limits: II. One-parameter discrimination with random-level variation. Neural computation, 13(10), 2317–2338. https://doi.org/10.1162/089976601750541813

Article  CAS  PubMed  Google Scholar 

Heinz, M. G., Colburn, H. S., & Carney, L. H. (2002). Quantifying the implications of nonlinear cochlear tuning for auditory-filter estimates. The Journal of the Acoustical Society of America, 111(2), 996–1011. https://doi.org/10.1121/1.1436071

Article  PubMed  Google Scholar 

Henry, K. S., Wang, Y., Abrams, K. S., & Carney, L. H. (2023). Mechanisms of masking by Schroeder-phase harmonic tone complexes in the budgerigar (Melopsittacus undulatus). Hearing Research, 435, 108812. https://doi.org/10.1016/j.heares.2023.108812

Article  PubMed  PubMed Central  Google Scholar 

Hewitt, M. J., & Meddis, R. (1994). A computer model of amplitude-modulation sensitivity of single units in the inferior colliculus. The Journal of the Acoustical Society of America, 95(4), 2145–2159. https://doi.org/10.1121/1.408676

Article  CAS  PubMed  Google Scholar 

Kalluri, S., & Delgutte, B. (2003). Mathematical models of cochlear nucleus onset neurons: I. Point neuron with many weak synaptic inputs. Journal of Computational Neuroscience, 14(1), 71–90. https://doi.org/10.1023/A:1021128418615

Article  PubMed  PubMed Central  Google Scholar 

Keithley, E. M., & Schreiber, R. C. (1987). Frequency map of the spiral ganglion in the cat. The Journal of the Acoustical Society of America, 81(4), 1036–1042. https://doi.org/10.1121/1.394675

Article  CAS  PubMed  Google Scholar 

Kim, D. O., Carney, L., & Kuwada, S. (2020). Amplitude modulation transfer functions reveal opposing populations within both the inferior colliculus and medial geniculate body. Journal of Neurophysiology, 124(4), 1198–1215. https://doi.org/10.1152/jn.00279.2020

Article  PubMed  PubMed Central  Google Scholar 

Klatt, D. H. (1980). Software for a cascade/parallel formant synthesizer. The Journal of the Acoustical Society of America, 67(3), 971–995. https://doi.org/10.1121/1.383940

Article  Google Scholar 

Kreeger, L. J., Honnuraiah, S., Maeker, S., Shea, S., Fishell, G., & Goodrich, L. V. (2024). An anatomical and physiological basis for coincidence detection across time scales in the auditory system. bioRxiv, 2024.2002.2029.582808. https://doi.org/10.1101/2024.02.29.582808

Krips, R., & Furst, M. (2009a). Stochastic properties of coincidence-detector neural cells. Neural Computation, 21(9), 2524–2553. https://doi.org/10.1162/neco.2009.07-07-563

Article  PubMed  Google Scholar 

Krips, R., & Furst, M. (2009b). Stochastic properties of auditory brainstem coincidence detectors in binaural perception. The Journal of the Acoustical Society of America, 125(3), 1567–1583. https://doi.org/10.1121/1.3068446

Article  PubMed  Google Scholar 

Liberman, M. C. (1978). Auditory-nerve response from cats raised in a low-noise chamber. The Journal of the Acoustical Society of America, 63(2), 442–455. https://doi.org/10.1121/1.381736

Article  CAS  PubMed  Google Scholar 

Liberman, M. C. (1993). Central projections of auditory nerve fibers of differing spontaneous rate, II: Posteroventral and dorsal cochlear nuclei. Journal of Comparative Neurology, 327(1), 17–36. https://doi.org/10.1002/cne.903270103

Article  CAS  PubMed  Google Scholar 

Liberman, A. M., & Mattingly, I. G. (1989). A specialization for speech perception. Science, 243(4890), 489–494. https://doi.org/10.1126/science.2643163

留言 (0)

沒有登入
gif