Adams, J. C. (1997). Projections from octopus cells of the posteroventral cochlear nucleus to the ventral nucleus of the lateral lemniscus in cat and human. Aud Neurosci, 3(4), 335–350.
Andoni, S., Li, N., & Pollak, G. D. (2007). Spectrotemporal receptive fields in the inferior colliculus revealing selectivity for spectral motion in conspecific vocalizations. The Journal of Neuroscience, 27(18), 4882–4893. https://doi.org/10.1523/jneurosci.4342-06.2007
Article CAS PubMed PubMed Central Google Scholar
Bal, R., & Oertel, D. (2001). Potassium currents in octopus cells of the mammalian cochlear nucleus. Journal of Neurophysiology, 86(5), 2299–2311. https://doi.org/10.1152/jn.2001.86.5.2299
Article CAS PubMed Google Scholar
Cai, H., Carney, L. H., & Colburn, H. S. (1998). A model for binaural response properties of inferior colliculus neurons. I. A model with interaural time difference-sensitive excitatory and inhibitory inputs. The Journal of the Acoustical Society of America, 103(1), 475–493. https://doi.org/10.1121/1.421100
Article CAS PubMed Google Scholar
Carney, L. H., Li, T., & McDonough, J. M. (2015). Speech coding in the brain: representation of vowel formants by midbrain neurons tuned to sound fluctuations. Eneuro, 2(4), ENEURO.0004-0015.2015. https://doi.org/10.1523/eneuro.0004-15.2015
Colburn, H. S. (1973). Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination. The Journal of the Acoustical Society of America, 54(6), 1458–1470. https://doi.org/10.1121/1.1914445
Article CAS PubMed Google Scholar
Covey, E., & Casseday, J. (1991). The monaural nuclei of the lateral lemniscus in an echolocating bat: Parallel pathways for analyzing temporal features of sound. The Journal of Neuroscience, 11(11), 3456–3470. https://doi.org/10.1523/jneurosci.11-11-03456.1991
Article CAS PubMed PubMed Central Google Scholar
Farhadi, A., Jennings, S. G., Strickland, E. A., & Carney, L. H. (2023). Subcortical auditory model including efferent dynamic gain control with inputs from cochlear nucleus and inferior colliculus. The Journal of the Acoustical Society of America, 154(6), 3644–3659. https://doi.org/10.1121/10.0022578
Fuzessery, Z. M., & Hall, J. C. (1996). Role of GABA in shaping frequency tuning and creating FM sweep selectivity in the inferior colliculus. Journal of Neurophysiology, 76(2), 1059–1073. https://doi.org/10.1152/jn.1996.76.2.1059
Article CAS PubMed Google Scholar
Gittelman, J. X., Li, N., & Pollak, G. D. (2009). Mechanisms underlying directional selectivity for frequency-modulated sweeps in the inferior colliculus revealed by in vivo whole-cell recordings. The Journal of Neuroscience, 29(41), 13030–13041. https://doi.org/10.1523/jneurosci.2477-09.2009
Article CAS PubMed PubMed Central Google Scholar
Godfrey, D. A., Kiang, N. Y. S., & Norris, B. E. (1975). Single unit activity in the posteroventral cochlear nucleus of the cat. Journal of Comparative Neurology, 162(2), 247–268. https://doi.org/10.1002/cne.901620206
Article CAS PubMed Google Scholar
Golding, N., Robertson, D., & Oertel, D. (1995). Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision. The Journal of Neuroscience, 15(4), 3138–3153. https://doi.org/10.1523/jneurosci.15-04-03138.1995
Article CAS PubMed PubMed Central Google Scholar
Golding, N. L., Ferragamo, M. J., & Oertel, D. (1999). Role of intrinsic conductances underlying responses to transients in octopus cells of the cochlear nucleus. The Journal of Neuroscience, 19(8), 2897–2905. https://doi.org/10.1523/jneurosci.19-08-02897.1999
Article CAS PubMed PubMed Central Google Scholar
Gordon, M., & O’Neill, W. E. (1998). Temporal processing across frequency channels by FM selective auditory neurons can account for FM rate selectivity. Hearing Research, 122(1), 97–108. https://doi.org/10.1016/S0378-5955(98)00087-2
Article CAS PubMed Google Scholar
Guest, D. R., & Carney, L. H. (2023). A fast and flexible approximation of power-law adaptation for auditory computational models. bioRxiv, 2023.2011.2030.569467. https://doi.org/10.1101/2023.11.30.569467
Heinz, M. G., Colburn, H. S., & Carney, L. H. (2001a). Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve. Neural Computation, 13(10), 2273–2316. https://doi.org/10.1162/089976601750541804
Article CAS PubMed Google Scholar
Heinz, M. G., Colburn, H. S., & Carney, L. H. (2001b). Evaluating auditory performance limits: II. One-parameter discrimination with random-level variation. Neural computation, 13(10), 2317–2338. https://doi.org/10.1162/089976601750541813
Article CAS PubMed Google Scholar
Heinz, M. G., Colburn, H. S., & Carney, L. H. (2002). Quantifying the implications of nonlinear cochlear tuning for auditory-filter estimates. The Journal of the Acoustical Society of America, 111(2), 996–1011. https://doi.org/10.1121/1.1436071
Henry, K. S., Wang, Y., Abrams, K. S., & Carney, L. H. (2023). Mechanisms of masking by Schroeder-phase harmonic tone complexes in the budgerigar (Melopsittacus undulatus). Hearing Research, 435, 108812. https://doi.org/10.1016/j.heares.2023.108812
Article PubMed PubMed Central Google Scholar
Hewitt, M. J., & Meddis, R. (1994). A computer model of amplitude-modulation sensitivity of single units in the inferior colliculus. The Journal of the Acoustical Society of America, 95(4), 2145–2159. https://doi.org/10.1121/1.408676
Article CAS PubMed Google Scholar
Kalluri, S., & Delgutte, B. (2003). Mathematical models of cochlear nucleus onset neurons: I. Point neuron with many weak synaptic inputs. Journal of Computational Neuroscience, 14(1), 71–90. https://doi.org/10.1023/A:1021128418615
Article PubMed PubMed Central Google Scholar
Keithley, E. M., & Schreiber, R. C. (1987). Frequency map of the spiral ganglion in the cat. The Journal of the Acoustical Society of America, 81(4), 1036–1042. https://doi.org/10.1121/1.394675
Article CAS PubMed Google Scholar
Kim, D. O., Carney, L., & Kuwada, S. (2020). Amplitude modulation transfer functions reveal opposing populations within both the inferior colliculus and medial geniculate body. Journal of Neurophysiology, 124(4), 1198–1215. https://doi.org/10.1152/jn.00279.2020
Article PubMed PubMed Central Google Scholar
Klatt, D. H. (1980). Software for a cascade/parallel formant synthesizer. The Journal of the Acoustical Society of America, 67(3), 971–995. https://doi.org/10.1121/1.383940
Kreeger, L. J., Honnuraiah, S., Maeker, S., Shea, S., Fishell, G., & Goodrich, L. V. (2024). An anatomical and physiological basis for coincidence detection across time scales in the auditory system. bioRxiv, 2024.2002.2029.582808. https://doi.org/10.1101/2024.02.29.582808
Krips, R., & Furst, M. (2009a). Stochastic properties of coincidence-detector neural cells. Neural Computation, 21(9), 2524–2553. https://doi.org/10.1162/neco.2009.07-07-563
Krips, R., & Furst, M. (2009b). Stochastic properties of auditory brainstem coincidence detectors in binaural perception. The Journal of the Acoustical Society of America, 125(3), 1567–1583. https://doi.org/10.1121/1.3068446
Liberman, M. C. (1978). Auditory-nerve response from cats raised in a low-noise chamber. The Journal of the Acoustical Society of America, 63(2), 442–455. https://doi.org/10.1121/1.381736
Article CAS PubMed Google Scholar
Liberman, M. C. (1993). Central projections of auditory nerve fibers of differing spontaneous rate, II: Posteroventral and dorsal cochlear nuclei. Journal of Comparative Neurology, 327(1), 17–36. https://doi.org/10.1002/cne.903270103
Article CAS PubMed Google Scholar
Liberman, A. M., & Mattingly, I. G. (1989). A specialization for speech perception. Science, 243(4890), 489–494. https://doi.org/10.1126/science.2643163
留言 (0)