A unique inflammaging profile generated by T cells from people with obesity is metformin resistant

Saresella M, et al. Increased activity of Th-17 and Th-9 lymphocytes and a skewing of the post-thymic differentiation pathway are seen in Alzheimer’s disease. Brain Behav Immun. 2011;25(3):539–47. https://doi.org/10.1016/J.BBI.2010.12.004.

Article  CAS  PubMed  Google Scholar 

Singh-Manoux A, et al. Obesity trajectories and risk of dementia: 28 years of follow-up in the Whitehall II Study. Alzheimer’s and Dementia. 2018;14(2):178–86. https://doi.org/10.1016/j.jalz.2017.06.2637.

Article  PubMed  Google Scholar 

Alpert A, et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat Med. 2019;25(3):487–95. https://doi.org/10.1038/s41591-019-0381-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sayed N, et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat Aging. 2021;1(7):598–615. https://doi.org/10.1038/s43587-021-00082-y.

Article  PubMed  PubMed Central  Google Scholar 

Frasca D, Romero M, Diaz A, Blomberg BB. Obesity accelerates age defects in B cells, and weight loss improves B cell function. Immun Ageing. 2023;20(1):1–11. https://doi.org/10.1186/S12979-023-00361-9/FIGURES/7.

Article  Google Scholar 

Ip B, et al. Th17 cytokines differentiate obesity from obesity-associated type 2 diabetes and promote TNFα production. Obesity. 2016;24(1):102–12. https://doi.org/10.1002/oby.21243.

Article  CAS  PubMed  Google Scholar 

Bharath LP, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 2020;32(1):44-55.e6. https://doi.org/10.1016/j.cmet.2020.04.015.

Article  CAS  PubMed  PubMed Central  Google Scholar 

SantaCruz-Calvo S, et al. Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nat Rev Endocrinol. 2022;18(1):23–42. https://doi.org/10.1038/s41574-021-00575-1.

Article  CAS  PubMed  Google Scholar 

Pugh GH, et al. T cells dominate peripheral inflammation in a cross-sectional analysis of obesity-associated diabetes. Obesity. 2022;30(10):1983–94. https://doi.org/10.1002/oby.23528.

Article  CAS  PubMed  Google Scholar 

Pugh GH, et al. T cells dominate peripheral inflammation in a cross-sectional analysis of obesity-associated diabetes. Obesity. 2022;30(10):1983–94. https://doi.org/10.1002/oby.23528.

Article  CAS  PubMed  Google Scholar 

Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. Immun Ageing. 2019;16(1):1–16. https://doi.org/10.1186/S12979-019-0164-9.

Article  CAS  Google Scholar 

Gustafson CE, Kim C, Weyand CM, Goronzy JJ. Influence of immune aging on vaccine responses. J Allergy Clin Immunol. 2020;145(5):1309. https://doi.org/10.1016/J.JACI.2020.03.017.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lord JM. The effect of aging of the immune system on vaccination responses. Hum Vaccin Immunother. 2013;9(6):1364. https://doi.org/10.4161/HV.24696.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Painter SD, Ovsyannikova IG, Poland GA. The weight of obesity on the human immune response to vaccination. Vaccine. 2015;33(36):4422–9. https://doi.org/10.1016/J.VACCINE.2015.06.101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watanabe M, et al. Central obesity, smoking habit, and hypertension are associated with lower antibody titres in response to COVID-19 mRNA vaccine. Diabetes Metab Res Rev. 2022;38(1):e3465. https://doi.org/10.1002/DMRR.3465.

Article  CAS  PubMed  Google Scholar 

Endo Y, et al. Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1. Cell Rep. 2015;12(6):1042–55. https://doi.org/10.1016/j.celrep.2015.07.014.

Article  CAS  PubMed  Google Scholar 

Nicholas DA, et al. Fatty acid metabolites combine with reduced β oxidation to activate Th17 inflammation in human type 2 diabetes. Cell Metab. 2019;30(3):447-461.e5. https://doi.org/10.1016/j.cmet.2019.07.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kulkarni AS, Gubbi S, Barzilai N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 2020;32(1):15–30. https://doi.org/10.1016/J.CMET.2020.04.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goldberg RB, et al. Effect of long-term metformin and lifestyle in the diabetes prevention program and its outcome study on coronary artery calcium. Circulation. 2017;136(1):52–64. https://doi.org/10.1161/CIRCULATIONAHA.116.025483.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumari S, et al. Antecedent Metabolic Health and Metformin (ANTHEM) Aging Study: rationale and study design for a randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2022;77(12):2373–7. https://doi.org/10.1093/GERONA/GLAB358.

Article  CAS  PubMed  Google Scholar 

Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a tool to target aging. Cell Metab. 2016;23(6):1060–5. https://doi.org/10.1016/J.CMET.2016.05.011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madiraju AK, et al. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med. 2018;24(9):1384–94. https://doi.org/10.1038/s41591-018-0125-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen DV, Rocke DM. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics. 2002;18(1):39–50. https://doi.org/10.1093/BIOINFORMATICS/18.1.39.

Article  CAS  PubMed  Google Scholar 

Ståhle L, Wold S. Partial least squares analysis with cross-validation for the two-class problem: a Monte Carlo study. J Chemom. 1987;1(3):185–96. https://doi.org/10.1002/CEM.1180010306.

Article  Google Scholar 

Lê Cao KA, González I, Déjean S. integrOmics: an R package to unravel relationships between two omics datasets. Bioinformatics. 2009;25(21):2855–6. https://doi.org/10.1093/BIOINFORMATICS/BTP515.

Article  PubMed  PubMed Central  Google Scholar 

Farrés M, Platikanov S, Tsakovski S, Tauler R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J Chemom. 2015;29(10):528–36. https://doi.org/10.1002/CEM.2736.

Article  Google Scholar 

Conway R, et al. Obesity and fatty acids promote mitochondrial translocation of STAT3 through ROS-dependent mechanisms. Front Aging. 2022;3:924003. https://doi.org/10.3389/fragi.2022.924003.

Article  PubMed  PubMed Central  Google Scholar 

Kirber MT, Chen K, Keaney JF. YFP photoconversion revisited: confirmation of the CFP-like species. Nat Methods. 2007;4(10):767–8. https://doi.org/10.1038/NMETH1007-767.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif