Saresella M, et al. Increased activity of Th-17 and Th-9 lymphocytes and a skewing of the post-thymic differentiation pathway are seen in Alzheimer’s disease. Brain Behav Immun. 2011;25(3):539–47. https://doi.org/10.1016/J.BBI.2010.12.004.
Article CAS PubMed Google Scholar
Singh-Manoux A, et al. Obesity trajectories and risk of dementia: 28 years of follow-up in the Whitehall II Study. Alzheimer’s and Dementia. 2018;14(2):178–86. https://doi.org/10.1016/j.jalz.2017.06.2637.
Alpert A, et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat Med. 2019;25(3):487–95. https://doi.org/10.1038/s41591-019-0381-y.
Article CAS PubMed PubMed Central Google Scholar
Sayed N, et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat Aging. 2021;1(7):598–615. https://doi.org/10.1038/s43587-021-00082-y.
Article PubMed PubMed Central Google Scholar
Frasca D, Romero M, Diaz A, Blomberg BB. Obesity accelerates age defects in B cells, and weight loss improves B cell function. Immun Ageing. 2023;20(1):1–11. https://doi.org/10.1186/S12979-023-00361-9/FIGURES/7.
Ip B, et al. Th17 cytokines differentiate obesity from obesity-associated type 2 diabetes and promote TNFα production. Obesity. 2016;24(1):102–12. https://doi.org/10.1002/oby.21243.
Article CAS PubMed Google Scholar
Bharath LP, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 2020;32(1):44-55.e6. https://doi.org/10.1016/j.cmet.2020.04.015.
Article CAS PubMed PubMed Central Google Scholar
SantaCruz-Calvo S, et al. Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nat Rev Endocrinol. 2022;18(1):23–42. https://doi.org/10.1038/s41574-021-00575-1.
Article CAS PubMed Google Scholar
Pugh GH, et al. T cells dominate peripheral inflammation in a cross-sectional analysis of obesity-associated diabetes. Obesity. 2022;30(10):1983–94. https://doi.org/10.1002/oby.23528.
Article CAS PubMed Google Scholar
Pugh GH, et al. T cells dominate peripheral inflammation in a cross-sectional analysis of obesity-associated diabetes. Obesity. 2022;30(10):1983–94. https://doi.org/10.1002/oby.23528.
Article CAS PubMed Google Scholar
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. Immun Ageing. 2019;16(1):1–16. https://doi.org/10.1186/S12979-019-0164-9.
Gustafson CE, Kim C, Weyand CM, Goronzy JJ. Influence of immune aging on vaccine responses. J Allergy Clin Immunol. 2020;145(5):1309. https://doi.org/10.1016/J.JACI.2020.03.017.
Article CAS PubMed PubMed Central Google Scholar
Lord JM. The effect of aging of the immune system on vaccination responses. Hum Vaccin Immunother. 2013;9(6):1364. https://doi.org/10.4161/HV.24696.
Article CAS PubMed PubMed Central Google Scholar
Painter SD, Ovsyannikova IG, Poland GA. The weight of obesity on the human immune response to vaccination. Vaccine. 2015;33(36):4422–9. https://doi.org/10.1016/J.VACCINE.2015.06.101.
Article CAS PubMed PubMed Central Google Scholar
Watanabe M, et al. Central obesity, smoking habit, and hypertension are associated with lower antibody titres in response to COVID-19 mRNA vaccine. Diabetes Metab Res Rev. 2022;38(1):e3465. https://doi.org/10.1002/DMRR.3465.
Article CAS PubMed Google Scholar
Endo Y, et al. Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1. Cell Rep. 2015;12(6):1042–55. https://doi.org/10.1016/j.celrep.2015.07.014.
Article CAS PubMed Google Scholar
Nicholas DA, et al. Fatty acid metabolites combine with reduced β oxidation to activate Th17 inflammation in human type 2 diabetes. Cell Metab. 2019;30(3):447-461.e5. https://doi.org/10.1016/j.cmet.2019.07.004.
Article CAS PubMed PubMed Central Google Scholar
Kulkarni AS, Gubbi S, Barzilai N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 2020;32(1):15–30. https://doi.org/10.1016/J.CMET.2020.04.001.
Article CAS PubMed PubMed Central Google Scholar
Goldberg RB, et al. Effect of long-term metformin and lifestyle in the diabetes prevention program and its outcome study on coronary artery calcium. Circulation. 2017;136(1):52–64. https://doi.org/10.1161/CIRCULATIONAHA.116.025483.
Article CAS PubMed PubMed Central Google Scholar
Kumari S, et al. Antecedent Metabolic Health and Metformin (ANTHEM) Aging Study: rationale and study design for a randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2022;77(12):2373–7. https://doi.org/10.1093/GERONA/GLAB358.
Article CAS PubMed Google Scholar
Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a tool to target aging. Cell Metab. 2016;23(6):1060–5. https://doi.org/10.1016/J.CMET.2016.05.011.
Article CAS PubMed PubMed Central Google Scholar
Madiraju AK, et al. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med. 2018;24(9):1384–94. https://doi.org/10.1038/s41591-018-0125-4.
Article CAS PubMed PubMed Central Google Scholar
Nguyen DV, Rocke DM. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics. 2002;18(1):39–50. https://doi.org/10.1093/BIOINFORMATICS/18.1.39.
Article CAS PubMed Google Scholar
Ståhle L, Wold S. Partial least squares analysis with cross-validation for the two-class problem: a Monte Carlo study. J Chemom. 1987;1(3):185–96. https://doi.org/10.1002/CEM.1180010306.
Lê Cao KA, González I, Déjean S. integrOmics: an R package to unravel relationships between two omics datasets. Bioinformatics. 2009;25(21):2855–6. https://doi.org/10.1093/BIOINFORMATICS/BTP515.
Article PubMed PubMed Central Google Scholar
Farrés M, Platikanov S, Tsakovski S, Tauler R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J Chemom. 2015;29(10):528–36. https://doi.org/10.1002/CEM.2736.
Conway R, et al. Obesity and fatty acids promote mitochondrial translocation of STAT3 through ROS-dependent mechanisms. Front Aging. 2022;3:924003. https://doi.org/10.3389/fragi.2022.924003.
Article PubMed PubMed Central Google Scholar
Kirber MT, Chen K, Keaney JF. YFP photoconversion revisited: confirmation of the CFP-like species. Nat Methods. 2007;4(10):767–8. https://doi.org/10.1038/NMETH1007-767.
留言 (0)