Canagliflozin treatment prevents follicular exhaustion and attenuates hallmarks of ovarian aging in genetically heterogenous mice

Levine ME, et al. Menopause accelerates biological aging. Proc Natl Acad Sci U S A. 2016;113(33):9327–32.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wellons M, et al. Early menopause predicts future coronary heart disease and stroke: the Multi-Ethnic Study of Atherosclerosis. Menopause. 2012;19(10):1081–7.

Article  PubMed  PubMed Central  Google Scholar 

Tchernof A, et al. Menopause, central body fatness, and insulin resistance: effects of hormone-replacement therapy. Coron Artery Dis. 1998;9(8):503–11.

Article  PubMed  CAS  Google Scholar 

Muka T, et al. Association of age at onset of menopause and time since onset of menopause with cardiovascular outcomes, intermediate vascular traits, and all-cause mortality: A Systematic Review and Meta-analysis. JAMA Cardiol. 2016;1(7):767–76.

Article  PubMed  Google Scholar 

Ossewaarde ME, et al. Age at menopause, cause-specific mortality and total life expectancy. Epidemiology. 2005;16(4):556–62.

Article  PubMed  Google Scholar 

May-Panloup P, et al. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update. 2016;22(6):725–43.

Article  PubMed  CAS  Google Scholar 

Lim J, Luderer U. Oxidative damage increases and antioxidant gene expression decreases with aging in the mouse ovary. Biol Reprod. 2011;84(4):775–82.

Article  PubMed  CAS  Google Scholar 

Yang L, et al. The role of oxidative stress and natural antioxidants in ovarian aging. Front Pharmacol. 2020;11:617843.

Article  PubMed  CAS  Google Scholar 

Ansere VA, et al. Cellular hallmarks of aging emerge in the ovary prior to primordial follicle depletion. Mech Ageing Dev. 2021;194:111425.

Article  PubMed  CAS  Google Scholar 

Briley SM, et al. Reproductive age-associated fibrosis in the stroma of the mammalian ovary. Reproduction. 2016;152(3):245–60.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lliberos C, et al. Evaluation of inflammation and follicle depletion during ovarian ageing in mice. Sci Rep. 2021;11(1):278.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Amargant F, et al. Ovarian stiffness increases with age in the mammalian ovary and depends on collagen and hyaluronan matrices. Aging Cell. 2020;19(11):e13259.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Umehara T et al. Female reproductive life span is extended by targeted removal of fibrotic collagen from the mouse ovary. Sci Adv, 2022;8(24): p.eabn4564. https://doi.org/10.1126/sciadv.abn4564

Isola JVV, et al. A single-cell atlas of the aging mouse ovary. Nat Aging. 2024;4(1):145–62.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ben Yaakov T et al. Single-cell analysis of the aged ovarian immune system reveals a shift towards adaptive immunity and attenuated cell function. Elife, 2023;12. https://doi.org/10.7554/eLife.74915

Isola JVV, et al. Mild calorie restriction, but not 17alpha-estradiol, extends ovarian reserve and fertility in female mice. Exp Gerontol. 2022;159:111669.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Selesniemi K, Lee HJ, Tilly JL. Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age. Aging Cell. 2008;7:622–9.

Article  PubMed  CAS  Google Scholar 

Garcia DN, et al. Effect of caloric restriction and rapamycin on ovarian aging in mice. Geroscience. 2019;41(4):395–408.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Veiga GB, et al. Effects of calorie, protein, and branched chain amino acid restriction on ovarian aging in mice. Reprod Biol. 2024;24(1):100856.

Article  PubMed  CAS  Google Scholar 

Qin X, et al. Metformin prevents murine ovarian aging. Aging (Albany NY). 2019;11(11):3785–94.

Article  PubMed  CAS  Google Scholar 

Castrillon DH, et al. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003;301(5630):215–8.

Article  PubMed  CAS  Google Scholar 

Schneider A, et al. The interconnections between somatic and ovarian aging in murine models. J Gerontol A Biol Sci Med Sci. 2021;76(9):1579–86.

Article  PubMed  CAS  Google Scholar 

Zhang X, et al. Enhanced glycolysis in granulosa cells promotes the activation of primordial follicles through mTOR signaling. Cell Death Dis. 2022;13(1):87.

Article  PubMed  PubMed Central  Google Scholar 

Isola JVV, et al. 17alpha-Estradiol promotes ovarian aging in growth hormone receptor knockout mice, but not wild-type littermates. Exp Gerontol. 2020;129:110769.

Article  PubMed  CAS  Google Scholar 

Saccon TD, et al. Ovarian aging and the activation of the primordial follicle reserve in the long-lived Ames dwarf and the short-lived bGH transgenic mice. Mol Cell Endocrinol. 2017;455:23–32.

Article  PubMed  CAS  Google Scholar 

Zhang H, et al. Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice. Curr Biol. 2014;24(21):2501–8.

Article  PubMed  CAS  Google Scholar 

Xu SY et al. Glucose activates the primordial follicle through the AMPK/mTOR signaling pathway. Clin Translat Med, 2020;10(3). https://doi.org/10.1002/ctm2.122

Gallet C, et al. The infusion of glucose in ewes during the luteal phase increases the number of follicles but reduces oestradiol production and some correlates of metabolic function in the large follicles. Anim Reprod Sci. 2011;127(3–4):154–63.

Article  PubMed  CAS  Google Scholar 

Neal B, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.

Article  PubMed  CAS  Google Scholar 

van der Hoek S, et al. Glycemic control and effects of Canagliflozin in reducing albuminuria and eGFR: a post hoc analysis of the CREDENCE trial. Clin J Am Soc Nephrol. 2023;18(6):748–58.

Article  PubMed  PubMed Central  Google Scholar 

Plosker GL. Canagliflozin: a review of its use in patients with type 2 diabetes mellitus. Drugs. 2014;74(7):807–24.

Article  PubMed  CAS  Google Scholar 

Patel DK, Strong J. The pleiotropic effects of sodium-glucose cotransporter-2 inhibitors: beyond the glycemic benefit. Diabetes Ther. 2019;10(5):1771–92.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang J, et al. Canagliflozin combined with metformin versus metformin monotherapy for endocrine and metabolic profiles in overweight and obese women with polycystic ovary syndrome: a single-center, open-labeled prospective randomized controlled trial. Front Endocrinol (Lausanne). 2022;13:1003238.

Article  PubMed  Google Scholar 

Cai M, et al. Efficacy of canagliflozin versus metformin in women with polycystic ovary syndrome: a randomized, open-label, noninferiority trial. Diabetes Obes Metab. 2022;24(2):312–20.

留言 (0)

沒有登入
gif