Investigating the causal relationship between immune factors and ankylosing spondylitis: insights from a Mendelian Randomization study

Sieper J, Poddubnyy D. Axial spondyloarthritis. Lancet (London, England). 2017;390(10089):73–84. https://doi.org/10.1016/s0140-6736(16)31591-4.

Article  PubMed  Google Scholar 

Mauro D, Thomas R, Guggino G, Lories R, Brown MA, Ciccia F. Ankylosing spondylitis: an autoimmune or autoinflammatory disease? Nat Rev Rheumatol. 2021;17(7):387–404. https://doi.org/10.1038/s41584-021-00625-y.

Article  CAS  PubMed  Google Scholar 

Costantino F, Talpin A, Said-Nahal R, et al. Prevalence of spondyloarthritis in reference to HLA-B27 in the French population: results of the GAZEL cohort. Ann Rheumatic Dis. 2015;74(4):689–93. https://doi.org/10.1136/annrheumdis-2013-204436.

Article  CAS  Google Scholar 

Han Q, Zheng Z, Zhang K, Ding J, Baraliakos X, Zhu P. A comprehensive assessment of hip damage in ankylosing spondylitis, especially early features. Front Immunol. 2021;12:668969. https://doi.org/10.3389/fimmu.2021.668969.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ben-Shabat N, Shabat A, Watad A, et al. Mortality in ankylosing spondylitis according to treatment: a nationwide retrospective cohort study of 5,900 patients from Israel. Arthritis Care Res. 2022;74(10):1614–22. https://doi.org/10.1002/acr.24616.

Article  CAS  Google Scholar 

Sternes PR, Brett L, Phipps J, et al. Distinctive gut microbiomes of ankylosing spondylitis and inflammatory bowel disease patients suggest differing roles in pathogenesis and correlate with disease activity. Arthritis Res Ther. 2022;24(1):163. https://doi.org/10.1186/s13075-022-02853-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kenyon M, Maguire S, Rueda Pujol A, O’Shea F, McManus R. The genetic backbone of ankylosing spondylitis: how knowledge of genetic susceptibility informs our understanding and management of disease. Rheumatol Int. 2022;42(12):2085–95. https://doi.org/10.1007/s00296-022-05174-5.

Article  PubMed  PubMed Central  Google Scholar 

Blin-Wakkach C, de Vries TJ. Editorial: advances in osteoimmunology. Front Immunol. 2019;10:2595. https://doi.org/10.3389/fimmu.2019.02595.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yee CS, Manilay JO, Chang JC, et al. Conditional deletion of sost in MSC-derived lineages identifies specific cell-type contributions to bone mass and B-Cell development. J Bone Miner Res. 2018;33(10):1748–59. https://doi.org/10.1002/jbmr.3467.

Article  CAS  PubMed  Google Scholar 

Ding Y, Yang Y, Xue L. Immune cells and their related genes provide a new perspective on the common pathogenesis of ankylosing spondylitis and inflammatory bowel diseases. Front Immunol. 2023;14:1137523.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rezaiemanesh A, Abdolmaleki M, Abdolmohammadi K, et al. Immune cells involved in the pathogenesis of ankylosing spondylitis. Biomed Pharmacother. 2018;100:198–204.

Article  CAS  PubMed  Google Scholar 

Niu X-Y, Zhang H-Y, Liu Y-J, Zhao D, Shan Y-X, Jiang Y-F. Peripheral B-cell activation and exhaustion markers in patients with ankylosing spondylitis. Life Sci. 2013;93(18-19):687–92.

Article  CAS  PubMed  Google Scholar 

Brewerton DA, Hart FD, Nicholls A, Caffrey M, James DC, Sturrock RD. Ankylosing spondylitis and HL-A 27. Lancet (London, England). 1973;1(7809):904–07. https://doi.org/10.1016/s0140-6736(73)91360-3.

Article  CAS  PubMed  Google Scholar 

Chatzikyriakidou A, Voulgari PV, Drosos AA. What is the role of HLA-B27 in spondyloarthropathies? Autoimmunity Rev. 2011;10(8):464–68. https://doi.org/10.1016/j.autrev.2011.01.011.

Article  CAS  Google Scholar 

Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis–insights into pathogenesis. Nat Rev Rheumatol. 2016;12(2):81–91. https://doi.org/10.1038/nrrheum.2015.133.

Article  CAS  PubMed  Google Scholar 

Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ (Clinical Research Ed). 2021;375:n2233.

PubMed  Google Scholar 

Orrù V, Steri M, Sidore C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nature Genet. 2020;52(10):1036–45. https://doi.org/10.1038/s41588-020-0684-4.

Article  CAS  PubMed  Google Scholar 

Sidore C, Busonero F, Maschio A, et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nature Genet. 2015;47(11):1272–81. https://doi.org/10.1038/ng.3368.

Article  CAS  PubMed  Google Scholar 

Kurki MI, Karjalainen J, Palta P, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613(7944):508–18. https://doi.org/10.1038/s41586-022-05473-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao RR, Yu XH, Xiong MF, Li XT, Deng FY, Lei SF. The immune factors have complex causal regulation effects on bone mineral density. Front Immunol. 2022;13:959417. https://doi.org/10.3389/fimmu.2022.959417.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang C, Zhu D, Zhang D, et al. Causal role of immune cells in schizophrenia: mendelian randomization (MR) study. BMC Psychiatry. 2023;23(1):590. https://doi.org/10.1186/s12888-023-05081-4.

Article  PubMed  PubMed Central  Google Scholar 

Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. https://doi.org/10.1038/nature15393.

Article  CAS  PubMed  Google Scholar 

Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from Mendelian Randomization Analyses with multiple genetic variants. Epidemiology (Cambridge, Mass). 2017;28(1):30–42. https://doi.org/10.1097/ede.0000000000000559.

Article  PubMed  Google Scholar 

Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7. https://doi.org/10.7554/eLife.34408.

Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nature Genet. 2018;50(5):693–98. https://doi.org/10.1038/s41588-018-0099-7.

Article  CAS  PubMed  Google Scholar 

Zheng Y, Cai B, Ren C, et al. Identification of immune related cells and crucial genes in the peripheral blood of ankylosing spondylitis by integrated bioinformatics analysis. PeerJ. 2021;9:e12125.

Article  PubMed  PubMed Central  Google Scholar 

Gui L, Luo X, Zhou L, Wei Q, Gu J. Peripheral CD4+/CD8+ T cell composition distinct from healthy individuals is shared by ankylosing spondylitis and rheumatoid arthritis. Int J Rheum Dis.2023; 26(10):2014–23. https://doi.org/10.1111/1756-185X.14860.

Article  CAS  PubMed  Google Scholar 

Li D, Cao R, Dong W, et al. Identification of potential biomarkers for ankylosing spondylitis based on bioinformatics analysis. BMC Musculoskelet Disord. 2023;24(1):413. https://doi.org/10.1186/s12891-023-06550-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu S, Ma Y, Wu M, et al. Neutrophil lymphocyte ratio in patients with ankylosing spondylitis: a systematic review and meta-analysis. Modern Rheumatol. 2020;30(1):141–48. https://doi.org/10.1080/14397595.2018.1564165.

Article 

留言 (0)

沒有登入
gif