Machine learning-driven simplification of the hypomania checklist-32 for adolescent: a feature selection approach

Adler AI, Painsky A. Feature importance in gradient boosting trees with cross-validation feature selection. Entropy Basel Switz. 2022;24(5):687.

Article  Google Scholar 

Ali M, Ali SI, Kim D, Hur T, Bang J, Lee S, et al. uEFS: an efficient and comprehensive ensemble-based feature selection methodology to select informative features. PLoS ONE. 2018;13(8):e0202705.

Article  PubMed  PubMed Central  Google Scholar 

Angst J, Adolfsson R, Benazzi F, Gamma A, Hantouche E, Meyer TD, et al. The HCL-32: towards a self-assessment tool for hypomanic symptoms in outpatients. J Affect Disord. 2005;88(2):217–33.

Article  PubMed  Google Scholar 

Brotman MA, Kircanski K, Leibenluft E. Irritability in children and adolescents. Annu Rev Clin Psychol. 2017;13(1):317–41.

Article  PubMed  Google Scholar 

Bystritsky A, Nierenberg AA, Feusner JD, Rabinovich M. Computational non-linear dynamical psychiatry: a new methodological paradigm for diagnosis and course of illness. J Psychiatr Res. 2012;46(4):428–35.

Article  CAS  PubMed  Google Scholar 

Comparelli A, Polidori L, Sarli G, Pistollato A, Pompili M. Differentiation and comorbidity of bipolar disorder and attention deficit and hyperactivity disorder in children, adolescents, and adults: a clinical and nosological perspective. Front Psychiatry. 2022. https://doi.org/10.3389/fpsyt.2022.949375/full.

Article  PubMed  PubMed Central  Google Scholar 

Duffy A, Carlson G, Dubicka B, Hillegers MHJ. Pre-pubertal bipolar disorder: origins and current status of the controversy. Int J Bipolar Disord. 2020;8(1):18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dwyer DB, Falkai P, Koutsouleris N. Machine learning approaches for clinical psychology and psychiatry. Annu Rev Clin Psychol. 2018;14(1):91–118.

Article  PubMed  Google Scholar 

Evans SC, Burke JD, Roberts MC, Fite PJ, Lochman JE, de la Peña FR, et al. Irritability in child and adolescent psychopathology: an integrative review for ICD-11. Clin Psychol Rev. 2017;1(53):29–45.

Article  Google Scholar 

Feng CH, Disis ML, Cheng C, Zhang L. Multimetric feature selection for analyzing multicategory outcomes of colorectal cancer: random forest and multinomial logistic regression models. Lab Investig J Tech Methods Pathol. 2022;102(3):236–44.

Article  Google Scholar 

Findling RL, Stepanova E, Youngstrom EA, Young AS. Progress in diagnosis and treatment of bipolar disorder among children and adolescents: an international perspective. BMJ Ment Health. 2018;21(4):177–81.

Google Scholar 

Gautam S, Jain A, Gautam M, Gautam A, Jagawat T. Clinical practice guidelines for bipolar affective disorder (BPAD) in children and adolescents. Indian J Psychiatry. 2019;61(Suppl 2):294.

Article  PubMed  PubMed Central  Google Scholar 

Jacobucci R, Grimm KJ. Machine learning and psychological research: the unexplored effect of measurement. Perspect Psychol Sci. 2020;15(3):809–16.

Article  PubMed  Google Scholar 

Ji G-W, Jiao C-Y, Xu Z-G, Li X-C, Wang K, Wang X-H. Development and validation of a gradient boosting machine to predict prognosis after liver resection for intrahepatic cholangiocarcinoma. BMC Cancer. 2022;11(22):258.

Article  Google Scholar 

Kent L, Craddock N. Is there a relationship between attention deficit hyperactivity disorder and bipolar disorder? J Affect Disord. 2003;73(3):211–21.

Article  PubMed  Google Scholar 

Lee K, Oh H, Lee E-H, Kim JH, Kim J-H, Hong KS. Investigation of the clinical utility of the hypomania checklist 32 (HCL-32) for the screening of bipolar disorders in the non-clinical adult population. BMC Psychiatry. 2016;4(16):124.

Article  Google Scholar 

Leibenluft E. Severe mood dysregulation, irritability, and the diagnostic boundaries of bipolar disorder in youths. Am J Psychiatry. 2011;168(2):129–42.

Article  PubMed  Google Scholar 

Leibenluft E, Blair RJR, Charney DS, Pine DS. Irritability in pediatric mania and other childhood psychopathology. Ann N Y Acad Sci. 2003;1008(1):201–18.

Article  PubMed  Google Scholar 

Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, et al. Feature selection: a data perspective. ACM Comput Surv. 2017;50(6):94:1-94:45.

Google Scholar 

Liang D, Frederick DA, Lledo EE, Rosenfield N, Berardi V, Linstead E, et al. Examining the utility of nonlinear machine learning approaches versus linear regression for predicting body image outcomes: the U.S. Body Project I. Body Image. 2022;1(41):32–45.

Article  Google Scholar 

Machado-Vieira R, Luckenbaugh DA, Ballard ED, Henter ID, Tohen M, Suppes T, et al. Increased activity or energy as a primary criterion for the diagnosis of bipolar mania in DSM-5: findings from the STEP-BD study. Am J Psychiatry. 2017;174(1):70–6.

Article  PubMed  Google Scholar 

Meter AV, Moreira ALR, Youngstrom E. Updated meta-analysis of epidemiologic studies of pediatric bipolar disorder. J Clin Psychiatry. 2019;80(3):21938.

Google Scholar 

Ng TH, Stange JP, Black CL, Titone MK, Weiss RB, Abramson LY, et al. Impulsivity predicts the onset of DSM-IV-TR or RDC hypomanic and manic episodes in adolescents and young adults with high or moderate reward sensitivity. J Affect Disord. 2016;1(198):88–95.

Article  Google Scholar 

Obermeyer Z, Emanuel EJ. Predicting the future—big data, machine learning, and clinical medicine. N Engl J Med. 2016;375(13):1216–9.

Article  PubMed  PubMed Central  Google Scholar 

Parry P, Allison S, Bastiampillai T. ‘Paediatric bipolar disorder’ rates are lower than claimed—a reexamination of the epidemiological surveys used by a meta-analysis. Child Adolesc Ment Health. 2018;23(1):14–22.

Article  PubMed  Google Scholar 

Pavuluri MN, Schenkel LS, Aryal S, Harral EM, Hill SK, Herbener ES, Sweeney JA (2006) Neurocognitive function in unmedicated manic and medicated euthymic pediatric bipolar patients. Am J Psychiatr 163(2):286–93. https://doi.org/10.1176/appi.ajp.163.2.286.

Reif DM, Motsinger AA, McKinney BA, Crowe JE, Moore JH. Feature selection using a random forests classifier for the integrated analysis of multiple data types. In: 2006 IEEE Symp Comput Intell Bioinforma Comput Biol. 2006. pp. 1–8. https://ieeexplore.ieee.org/abstract/document/4133169. Accessed 25 Sep 2024.

Ryles F, Meyer TD, Adan-Manes J, MacMillan I, Scott J. A systematic review of the frequency and severity of manic symptoms reported in studies that compare phenomenology across children, adolescents and adults with bipolar disorders. Int J Bipolar Disord. 2017;3(5):4.

Article  Google Scholar 

Sandstrom A, Perroud N, Alda M, Uher R, Pavlova B. Prevalence of attention-deficit/hyperactivity disorder in people with mood disorders: a systematic review and meta-analysis. Acta Psychiatr Scand. 2021;143(5):380–91.

Article  PubMed  Google Scholar 

Shatte ABR, Hutchinson DM, Teague SJ. Machine learning in mental health: a scoping review of methods and applications. Psychol Med. 2019;49(9):1426–48.

Article  PubMed  Google Scholar 

Stringaris A. Irritability in children and adolescents: a challenge for DSM-5. Eur Child Adolesc Psychiatry. 2011;20(2):61–6.

Article  PubMed  Google Scholar 

Wang Y-Y, Feng Y, Wang F, Huang W, Ng CH, Ungvari GS, et al. Comparing two short versions of the 32-item Hypomania Checklist (HCL-32) for patients with bipolar disorder. Perspect Psychiatr Care. 2019;55(3):396–400.

Article  PubMed  Google Scholar 

Wang Q, Sui A, Gong L, Chattun MR, Han R, Cao Q, et al. Personality traits influence the effectiveness of hypomania checklist-32 in screening for bipolar disorder. Front Psychiatry. 2022;13:919305.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif