Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325(7):669–85. https://doi.org/10.1001/jama.2021.0106.
Article PubMed CAS Google Scholar
Keller DSBM, Perez RO, et al. The multidisciplinary management of rectal cancer. Nat Rev Gastroenterol Hepatol. 2020;17(7):414–29. https://doi.org/10.1038/s41575-020-0275-y.
You YN, Hardiman KM, Bafford A, et al. The American Society of colon and rectal surgeons clinical practice guidelines for the management of rectal cancer. Dis Colon Rectum. 2020;63(9):1191–222. https://doi.org/10.1097/DCR.0000000000001762.
Cremolini C, Antoniotti C, Lonardi S, et al. Activity and safety of cetuximab plus modified FOLFOXIRI followed by maintenance with cetuximab or bevacizumab for RAS and BRAF wild-type metastatic colorectal cancer: a randomized phase 2 clinical trial. JAMA Oncol. 2018;4(4):529–36. https://doi.org/10.1001/jamaoncol.2017.5314.
Article PubMed PubMed Central Google Scholar
Bennouna J, Hiret S, Bertaut A, et al. Continuation of bevacizumab vs cetuximab plus chemotherapy after first progression in KRAS wild-type metastatic colorectal cancer: the UNICANCER PRODIGE18 randomized clinical trial. JAMA Oncol. 2019;5(1):83–90. https://doi.org/10.1001/jamaoncol.2018.4465.
Zhu G, Pei L, Xia H, et al. Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol Cancer. 2021;20(1):143. https://doi.org/10.1186/s12943-021-01441-4.
Article PubMed PubMed Central CAS Google Scholar
Von Moos R, Koeberle D, Schacher S, et al. Neoadjuvant radiotherapy combined with capecitabine and sorafenib in patients with advanced KRAS-mutated rectal cancer: a phase I/II trial (SAKK 41/08). Eur J Cancer. 2018;89:82–9. https://doi.org/10.1016/j.ejca.2017.11.005.
Radanova M, Mihaylova G, Stoyanov GS, et al. KRAS mutation status in bulgarian patients with advanced and metastatic colorectal cancer. Int J Mol Sci. 2023; 24(16)
Dienstmann R, Connor K, Byrne AT, et al. Precision therapy in RAS mutant colorectal cancer. Gastroenterology. 2020;158(4):806–11. https://doi.org/10.3390/ijms241612753.
Article PubMed CAS Google Scholar
Pfeiffer P, Qvortrup C. KRAS(G12C) inhibition in colorectal cancer. Lancet Oncol. 2022;23(1):10–1. https://doi.org/10.1016/S1470-2045(21)00652-5.
Article PubMed CAS Google Scholar
Asawa P, Bakalov V, Kancharla P, et al. The prognostic value of KRAS mutation in locally advanced rectal cancer. Int J Colorectal Dis. 2022;37(5):1199–207. https://doi.org/10.1007/s00384-022-04167-x.
Zhang Y, Wu Z, Zhang B, et al. Prognostic impact of high-risk factors and KRAS mutation in patients with stage II deficient mismatch repair colon cancer: a retrospective cohort study. Ann Transl Med. 2022;10(12):702. https://doi.org/10.21037/atm-22-2803.
Article PubMed PubMed Central CAS Google Scholar
Kitsel Y, Cooke T, Sotirchos V, et al. Colorectal cancer liver metastases: genomics and biomarkers with focus on local therapies. Cancers. 2023;15(6):1679. https://doi.org/10.3390/cancers15061679.
Article PubMed PubMed Central CAS Google Scholar
Yang L, Dong D, Fang M, et al. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer? Eur Radiol. 2018;28(5):2058–67. https://doi.org/10.1007/s00330-017-5146-8.
Sclafani F, Chau I, Cunningham D, et al. KRAS and BRAF mutations in circulating tumour DNA from locally advanced rectal cancer. Sci Rep. 2018;8(1):1445. https://doi.org/10.1038/s41598-018-19212-5.
Article PubMed PubMed Central CAS Google Scholar
Qi Y, Zhao T, Han M. The application of radiomics in predicting gene mutations in cancer. Eur Radiol. 2022;32(6):4014–24. https://doi.org/10.1007/s00330-021-08520-6.
Article PubMed CAS Google Scholar
Chen S, Jiang L, Gao F, et al. Machine learning-based pathomics signature could act as a novel prognostic marker for patients with clear cell renal cell carcinoma. Br J Cancer. 2022;126(5):771–7. https://doi.org/10.1038/s41416-021-01640-2.
Article PubMed CAS Google Scholar
Sato M, Morimoto K, Kajihara S, et al. Machine-learning approach for the development of a novel predictive model for the diagnosis of hepatocellular carcinoma. Sci Rep. 2019;9(1):7704. https://doi.org/10.1038/s41598-019-44022-8.
Article PubMed PubMed Central CAS Google Scholar
Shew M, New J, Bur AM. Machine learning to predict delays in adjuvant radiation following surgery for head and neck cancer. Otolaryngol Head Neck Surg. 2019;160(6):1058–64. https://doi.org/10.1177/0194599818823200.
Ingwersen EW, Stam WT, Meijs BJV, et al. Machine learning versus logistic regression for the prediction of complications after pancreatoduodenectomy. Surgery. 2023;174(3):435–40. https://doi.org/10.1016/j.surg.2023.03.012.
Patel H, Shah H, Patel G, et al. Hematologic cancer diagnosis and classification using machine and deep learning: State-of-the-art techniques and emerging research directives. Artif Intell Med. 2024;152:102883. https://doi.org/10.1016/j.artmed.2024.102883.
Wu X, Li Y, Chen X, et al. Deep learning features improve the performance of a radiomics signature for predicting KRAS status in patients with colorectal cancer. Acad Radiol. 2020;27(11):e254–62. https://doi.org/10.1016/j.acra.2019.12.007.
Zhang Z, Shen L, Wang Y, et al. MRI radiomics signature as a potential biomarker for predicting KRAS status in locally advanced rectal cancer patients. Front Oncol. 2021;11:614052. https://doi.org/10.3389/fonc.2021.614052.
Article PubMed PubMed Central CAS Google Scholar
He P, Zou Y, Qiu J, et al. Pretreatment (18)F-FDG PET/CT imaging predicts the KRAS/NRAS/BRAF gene mutational status in colorectal cancer. J Oncol. 2021;2021:6687291. https://doi.org/10.1155/2021/6687291.
Article PubMed PubMed Central CAS Google Scholar
Ganzer R, Mangold A, Siokou FS, et al. Value of magnetic resonance imaging/ultrasound fusion prostate biopsy to select patients for focal therapy. World J Urol. 2022;40(11):2689–94. https://doi.org/10.1007/s00345-022-04157-2.
Article PubMed CAS Google Scholar
Dong X-Y, Li Q-M, Xue W-L, et al. Diagnostic performance of endorectal ultrasound combined with shear wave elastography for rectal tumors staging. Clin Hemorheol Microcircul. 2023;84(4):399–411. https://doi.org/10.3233/CH-231716.
Mao N, Shi Y, Lian C, et al. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography. Eur Radiol. 2022;32(5):3207–19. https://doi.org/10.1007/s00330-021-08414-7.
Article PubMed CAS Google Scholar
Huang Z, Mo S, Wu H, et al. Optimizing breast cancer diagnosis with photoacoustic imaging: an analysis of intratumoral and peritumoral radiomics. Photoacoustics. 2024;38:100606. https://doi.org/10.1016/j.pacs.2024.100606.
Article PubMed PubMed Central Google Scholar
Wang SR, Cao CL, Du TT, et al. Machine learning model for predicting axillary lymph node metastasis in clinically node positive breast cancer based on peritumoral ultrasound radiomics and SHAP feature analysis. J Ultrasound Med. 2024. https://doi.org/10.1002/jum.16483.
留言 (0)