miR-484 as an “OncomiR” in Breast Cancer Promotes Tumorigenesis by Suppressing Apoptosis Genes

Liang Y, Zhang H, Song X, Yang Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin Cancer Biol. 2020;60:14–27. https://doi.org/10.1016/j.semcancer.2019.08.012.

Article  CAS  PubMed  Google Scholar 

do Nascimento RG, Otoni KM. Histological and molecular classification of breast cancer: what do we know? Mastology. 2020;30:1–8. https://doi.org/10.29289/25945394202020200024.

Article  Google Scholar 

Richard V, Davey MG, Annuk H, et al. Micrornas in molecular classification and pathogenesis of breast tumors. Cancers (Basel). 2021;13(21):5332. https://doi.org/10.3390/cancers13215332.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aldrees R, Gao X, Zhang K, Siegal GP. Validation of the revised 8th AJCC breast cancer clinical prognostic staging system: analysis of 5321 cases from a single institution. Mod Pathol. 2021;2:291–9. https://doi.org/10.1038/s41379-020-00650-4.

Article  CAS  Google Scholar 

Koh J, Kim MJ. Erratum to: introduction of a new staging system of breast cancer for radiologists: an emphasis on the prognostic stage (Korean J Radiol 2019;20(1):69-82, 10.3348/kjr.2018.0231). Korean J Radiol. 2022;23(5):570. https://doi.org/10.3348/kjr.2022.0246.

Article  PubMed  PubMed Central  Google Scholar 

Loh HY, Norman BP, Lai KS, Rahman NMA, Alitheen NBM, Osman MA. The regulatory role of microRNAs in breast cancer. Int J Mol Sci. 2019;20(19):1–27. https://doi.org/10.3390/ijms20194940.

Article  CAS  Google Scholar 

Singh V, Khurana A, Navik U, Allawadhi P, Bharani KK, Weiskirchen R. Apoptosis and pharmacological therapies for targeting thereof for cancer therapeutics. Published online 2022.

Asadi M, Taghizadeh S, Kaviani E, et al. Caspase-3: Structure, function, and biotechnological aspects. Biotechnol Appl Biochem. 2022;69(4):1633–45. https://doi.org/10.1002/bab.2233.

Article  CAS  PubMed  Google Scholar 

Elango R, Alsaleh KA, Vishnubalaji R, et al. MicroRNA expression profiling on paired primary and lymph node metastatic breast cancer revealed distinct microRNA profile associated with LNM. Front Oncol. 2020;10:1–13. https://doi.org/10.3389/fonc.2020.00756.

Article  Google Scholar 

Mcguire KP. Breast Anatomy and Physiology. In: A Aydiner, A Iğci, A Soran, editors. Breast disease: diagnosis and pathology, vol 1, Cham: Springer; 2016. https://doi.org/10.1007/978-3-319-22843-3.

Chapter  Google Scholar 

Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70. https://doi.org/10.1158/0008-5472.CAN-05-1783.

Article  CAS  PubMed  Google Scholar 

Inoue J, Inazawa J. Cancer-associated miRNAs and their therapeutic potential. J Hum Genet. 2021;66(9):937–45. https://doi.org/10.1038/s10038-021-00938-6.

Article  CAS  PubMed  Google Scholar 

Fridrichova I, Zmetakova I. MicroRNAs contribute to breast cancer invasiveness. Cells. 2019;8(11):1361. https://doi.org/10.3390/cells8111361.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem. 2017;8(1):45–56. https://doi.org/10.4331/wjbc.v8.i1.45.

Article  PubMed  PubMed Central  Google Scholar 

Hamurcu Z, Sener EF, Taheri S, et al. MicroRNA profiling identifies Forkhead box transcription factor M1 (FOXM1) regulated miR-186 and miR-200b alterations in triple negative breast cancer. Cell Signal. 2021;83:109979. https://doi.org/10.1016/j.cellsig.2021.109979.

Article  CAS  PubMed  Google Scholar 

Jia YZ, Liu J, Wang GQ, Song ZF. miR-484: A potential biomarker in health and disease. Front Oncol. 2022;12:830420. https://doi.org/10.3389/fonc.2022.830420.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang S, Wang W, Han X, Wang Y, Ge Y, Tan Z. Dysregulation of miR484-TUSC5 axis takes part in the progression of hepatocellular carcinoma. J Biochem. 2019;166(3):271–9. https://doi.org/10.1093/jb/mvz034.

Article  CAS  PubMed  Google Scholar 

Hu Y, Xie H, Liu Y, Liu W, Liu M, Tang H. miR-484 suppresses proliferation and epithelial-mesenchymal transition by targeting ZEB1 and SMAD2 in cervical cancer cells. Cancer Cell Int. 2017;17(1):1–17. https://doi.org/10.1186/s12935-017-0407-9.

Article  CAS  Google Scholar 

Li T, Ding ZL, Zheng YL, Wang W. MiR-484 promotes non-small-cell lung cancer (NSCLC) progression through inhibiting Apaf-1 associated with the suppression of apoptosis. Biomed Pharmacother. 2017;96:153–64. https://doi.org/10.1016/j.biopha.2017.09.102.

Article  CAS  PubMed  Google Scholar 

Merhautova J, Hezova R, Poprach A, et al. MiR-155 and miR-484 are associated with time to progression in metastatic renal cell carcinoma treated with sunitinib. Biomed Res Int. 2015;2015:941980. https://doi.org/10.1155/2015/941980.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vecchione A, Belletti B, Lovat F, et al. A microRNA signature defines chemoresistance in ovarian cancer through modulation of angiogenesis. Proc Natl Acad Sci U S A. 2013;110(24):9845–50. https://doi.org/10.1073/pnas.1305472110.

Article  PubMed  PubMed Central  Google Scholar 

Lee D, Tang W, Dorsey TH, Ambs S. MiR-484 is associated with disease recurrence and promotes migration in prostate cancer. Biosci Rep. 2020;40(5):1–14. https://doi.org/10.1042/BSR20191028.

Article  Google Scholar 

Wang L, Zhang S, Wang X, Chen X, Wang X. The metabolic mechanisms of breast cancer metastasis. Front Oncol. 2021;10:602416. https://doi.org/10.3389/fonc.2020.602416.

Article  PubMed  PubMed Central  Google Scholar 

Khera AV, Emdin CA, Drake I, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375(24):2349–58. https://doi.org/10.1056/NEJMoa1605086.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang Y, Lin X, Lu X, et al. Interferon-microRNA signalling drives liver precancerous lesion formation and hepatocarcinogenesis. Gut. 2016;65(7):1186–201. https://doi.org/10.1136/gutjnl-2015-310318.

Article  CAS  PubMed  Google Scholar 

Yi R, Feng J, Yang S, et al. miR-484/MAP2/c-Myc-positive regulatory loop in glioma promotes tumor-initiating properties through ERK1/2 signaling. J Mol Histol. 2018;49(2):209–18. https://doi.org/10.1007/s10735-018-9760-9.

Article  CAS  PubMed  Google Scholar 

Kabil N. miR-484 Functions as an Onco-miR in Triple Negative Breast Cancer. Published online 2018. Available at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations/897/

Zearo S, Kim E, Zhu Y, et al. MicroRNA-484 is more highly expressed in serum of early breast cancer patients compared to healthy volunteers. BMC Cancer. 2014;14(1):1–7. https://doi.org/10.1186/1471-2407-14-200.

Article  CAS  Google Scholar 

Tahtasakal R, Sener EF, Delibasi N, et al. Overexpression of the PTEN gene in myocardial tissues of coronary bypass surgery patients. Arq Bras Cardiol. 2023;120(4):1–9. https://doi.org/10.36660/abc.20220169.

Article  CAS  Google Scholar 

Hamurcu Z, Ashour A, Kahraman N, Ozpolat B. FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells. Oncotarget. 2016;7(13):16619–35. https://doi.org/10.18632/oncotarget.7672.

Article  PubMed  PubMed Central  Google Scholar 

Hamurcu Z, Delibaşı N, Geçene S, Şener EF, Altuntaş HD. Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/Src signaling in triple negative breast cancer cells. J Cancer Res Clin Oncol. 2018;144(3):415–30. https://doi.org/10.1007/s00432-017-2557-5.

Article  CAS 

留言 (0)

沒有登入
gif