Liang Y, Zhang H, Song X, Yang Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin Cancer Biol. 2020;60:14–27. https://doi.org/10.1016/j.semcancer.2019.08.012.
Article CAS PubMed Google Scholar
do Nascimento RG, Otoni KM. Histological and molecular classification of breast cancer: what do we know? Mastology. 2020;30:1–8. https://doi.org/10.29289/25945394202020200024.
Richard V, Davey MG, Annuk H, et al. Micrornas in molecular classification and pathogenesis of breast tumors. Cancers (Basel). 2021;13(21):5332. https://doi.org/10.3390/cancers13215332.
Article CAS PubMed PubMed Central Google Scholar
Aldrees R, Gao X, Zhang K, Siegal GP. Validation of the revised 8th AJCC breast cancer clinical prognostic staging system: analysis of 5321 cases from a single institution. Mod Pathol. 2021;2:291–9. https://doi.org/10.1038/s41379-020-00650-4.
Koh J, Kim MJ. Erratum to: introduction of a new staging system of breast cancer for radiologists: an emphasis on the prognostic stage (Korean J Radiol 2019;20(1):69-82, 10.3348/kjr.2018.0231). Korean J Radiol. 2022;23(5):570. https://doi.org/10.3348/kjr.2022.0246.
Article PubMed PubMed Central Google Scholar
Loh HY, Norman BP, Lai KS, Rahman NMA, Alitheen NBM, Osman MA. The regulatory role of microRNAs in breast cancer. Int J Mol Sci. 2019;20(19):1–27. https://doi.org/10.3390/ijms20194940.
Singh V, Khurana A, Navik U, Allawadhi P, Bharani KK, Weiskirchen R. Apoptosis and pharmacological therapies for targeting thereof for cancer therapeutics. Published online 2022.
Asadi M, Taghizadeh S, Kaviani E, et al. Caspase-3: Structure, function, and biotechnological aspects. Biotechnol Appl Biochem. 2022;69(4):1633–45. https://doi.org/10.1002/bab.2233.
Article CAS PubMed Google Scholar
Elango R, Alsaleh KA, Vishnubalaji R, et al. MicroRNA expression profiling on paired primary and lymph node metastatic breast cancer revealed distinct microRNA profile associated with LNM. Front Oncol. 2020;10:1–13. https://doi.org/10.3389/fonc.2020.00756.
Mcguire KP. Breast Anatomy and Physiology. In: A Aydiner, A Iğci, A Soran, editors. Breast disease: diagnosis and pathology, vol 1, Cham: Springer; 2016. https://doi.org/10.1007/978-3-319-22843-3.
Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70. https://doi.org/10.1158/0008-5472.CAN-05-1783.
Article CAS PubMed Google Scholar
Inoue J, Inazawa J. Cancer-associated miRNAs and their therapeutic potential. J Hum Genet. 2021;66(9):937–45. https://doi.org/10.1038/s10038-021-00938-6.
Article CAS PubMed Google Scholar
Fridrichova I, Zmetakova I. MicroRNAs contribute to breast cancer invasiveness. Cells. 2019;8(11):1361. https://doi.org/10.3390/cells8111361.
Article CAS PubMed PubMed Central Google Scholar
Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem. 2017;8(1):45–56. https://doi.org/10.4331/wjbc.v8.i1.45.
Article PubMed PubMed Central Google Scholar
Hamurcu Z, Sener EF, Taheri S, et al. MicroRNA profiling identifies Forkhead box transcription factor M1 (FOXM1) regulated miR-186 and miR-200b alterations in triple negative breast cancer. Cell Signal. 2021;83:109979. https://doi.org/10.1016/j.cellsig.2021.109979.
Article CAS PubMed Google Scholar
Jia YZ, Liu J, Wang GQ, Song ZF. miR-484: A potential biomarker in health and disease. Front Oncol. 2022;12:830420. https://doi.org/10.3389/fonc.2022.830420.
Article CAS PubMed PubMed Central Google Scholar
Wang S, Wang W, Han X, Wang Y, Ge Y, Tan Z. Dysregulation of miR484-TUSC5 axis takes part in the progression of hepatocellular carcinoma. J Biochem. 2019;166(3):271–9. https://doi.org/10.1093/jb/mvz034.
Article CAS PubMed Google Scholar
Hu Y, Xie H, Liu Y, Liu W, Liu M, Tang H. miR-484 suppresses proliferation and epithelial-mesenchymal transition by targeting ZEB1 and SMAD2 in cervical cancer cells. Cancer Cell Int. 2017;17(1):1–17. https://doi.org/10.1186/s12935-017-0407-9.
Li T, Ding ZL, Zheng YL, Wang W. MiR-484 promotes non-small-cell lung cancer (NSCLC) progression through inhibiting Apaf-1 associated with the suppression of apoptosis. Biomed Pharmacother. 2017;96:153–64. https://doi.org/10.1016/j.biopha.2017.09.102.
Article CAS PubMed Google Scholar
Merhautova J, Hezova R, Poprach A, et al. MiR-155 and miR-484 are associated with time to progression in metastatic renal cell carcinoma treated with sunitinib. Biomed Res Int. 2015;2015:941980. https://doi.org/10.1155/2015/941980.
Article CAS PubMed PubMed Central Google Scholar
Vecchione A, Belletti B, Lovat F, et al. A microRNA signature defines chemoresistance in ovarian cancer through modulation of angiogenesis. Proc Natl Acad Sci U S A. 2013;110(24):9845–50. https://doi.org/10.1073/pnas.1305472110.
Article PubMed PubMed Central Google Scholar
Lee D, Tang W, Dorsey TH, Ambs S. MiR-484 is associated with disease recurrence and promotes migration in prostate cancer. Biosci Rep. 2020;40(5):1–14. https://doi.org/10.1042/BSR20191028.
Wang L, Zhang S, Wang X, Chen X, Wang X. The metabolic mechanisms of breast cancer metastasis. Front Oncol. 2021;10:602416. https://doi.org/10.3389/fonc.2020.602416.
Article PubMed PubMed Central Google Scholar
Khera AV, Emdin CA, Drake I, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375(24):2349–58. https://doi.org/10.1056/NEJMoa1605086.
Article CAS PubMed PubMed Central Google Scholar
Yang Y, Lin X, Lu X, et al. Interferon-microRNA signalling drives liver precancerous lesion formation and hepatocarcinogenesis. Gut. 2016;65(7):1186–201. https://doi.org/10.1136/gutjnl-2015-310318.
Article CAS PubMed Google Scholar
Yi R, Feng J, Yang S, et al. miR-484/MAP2/c-Myc-positive regulatory loop in glioma promotes tumor-initiating properties through ERK1/2 signaling. J Mol Histol. 2018;49(2):209–18. https://doi.org/10.1007/s10735-018-9760-9.
Article CAS PubMed Google Scholar
Kabil N. miR-484 Functions as an Onco-miR in Triple Negative Breast Cancer. Published online 2018. Available at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations/897/
Zearo S, Kim E, Zhu Y, et al. MicroRNA-484 is more highly expressed in serum of early breast cancer patients compared to healthy volunteers. BMC Cancer. 2014;14(1):1–7. https://doi.org/10.1186/1471-2407-14-200.
Tahtasakal R, Sener EF, Delibasi N, et al. Overexpression of the PTEN gene in myocardial tissues of coronary bypass surgery patients. Arq Bras Cardiol. 2023;120(4):1–9. https://doi.org/10.36660/abc.20220169.
Hamurcu Z, Ashour A, Kahraman N, Ozpolat B. FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells. Oncotarget. 2016;7(13):16619–35. https://doi.org/10.18632/oncotarget.7672.
Article PubMed PubMed Central Google Scholar
Hamurcu Z, Delibaşı N, Geçene S, Şener EF, Altuntaş HD. Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/Src signaling in triple negative breast cancer cells. J Cancer Res Clin Oncol. 2018;144(3):415–30. https://doi.org/10.1007/s00432-017-2557-5.
留言 (0)