Exploration and application of microorganisms related to the inference of the time since deposition (TsD) in semen and blood stains

Butler JM (2004) Short tandem repeat analysis for human identity testing. John Wiley, New York. 2001–2020 United States

Book  Google Scholar 

Díez López C, Kayser M, Vidaki A (2021) Estimating the Time since Deposition of Saliva Stains with a targeted bacterial DNA Approach: a proof-of-Principle Study. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.647933

Rajamannar K (1977) Determination of the age of bloodstains using immunoelectrophoresi. J Forensic Sci 22:159–164

Article  PubMed  Google Scholar 

Das T, Harshey A, Srivastava A et al (2021) Analysis of the ex-vivo transformation of semen, saliva and urine as they dry out using ATR-FTIR spectroscopy and chemometric approach. Sci Rep 11. https://doi.org/10.1038/s41598-021-91009-5

Li B, Beveridge P, O’Hare WT, Islam M (2011) The estimation of the age of a blood stain using reflectance spectroscopy with a microspectrophotometer, spectral pre-processing and linear discriminant analysis. Forensic Sci Int. https://doi.org/10.1016/j.forsciint.2011.05.031

Article  PubMed  Google Scholar 

Rodrigues-Lima F, Hanson EK, Ballantyne J (2010) A Blue Spectral Shift of the Hemoglobin Soret Band Correlates with the age (Time since Deposition) of dried bloodstains. PLoS ONE 5. https://doi.org/10.1371/journal.pone.0012830

Doty KC, McLaughlin G, Lednev IK (2016) A Raman spectroscopic clock for bloodstain age determination: the first week after deposition. Anal Bioanal Chem 408:3993–4001. https://doi.org/10.1007/s00216-016-9486-z

Article  PubMed  Google Scholar 

Zhang R, Wang P, Chen J, Tian Y, Gao J (2023) Age estimation of bloodstains based on Raman spectroscopy and chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 290. https://doi.org/10.1016/j.saa.2022.122284

Edelman G, van Leeuwen TG, Aalders MCG (2012) Hyperspectral imaging for the age estimation of blood stains at the crime scene. Forensic Sci Int 223:72–77. https://doi.org/10.1016/j.forsciint.2012.08.003

Article  PubMed  Google Scholar 

Giulietti N, Discepolo S, Castellini P, Martarelli M (2023) Neural network based hyperspectral imaging for substrate independent bloodstain age estimation. Forensic Sci Int 349. https://doi.org/10.1016/j.forsciint.2023.111742

Li B, Beveridge P, O’Hare WT, Islam M (2013) The age estimation of blood stains up to 30days old using visible wavelength hyperspectral image analysis and linear discriminant analysis. Sci Justice 53:270–277. https://doi.org/10.1016/j.scijus.2013.04.004

Article  PubMed  Google Scholar 

Cadd S, Li B, Beveridge P, O’Hare WT, Campbell A, Islam M (2016) The non-contact detection and identification of blood stained fingerprints using visible wavelength reflectance hyperspectral imaging: part 1. Sci Justice 56:181–190. https://doi.org/10.1016/j.scijus.2016.01.004

Article  PubMed  Google Scholar 

Weber A, Wójtowicz A, Lednev IK (2021) Post deposition aging of bloodstains probed by steady-state fluorescence spectroscopy. Journal of Photochemistry and Photobiology B: Biology 221. https://doi.org/10.1016/j.jphotobiol.2021.112251

Achetib N, Leemberg CC, Geurts MMP et al (2023) Towards Onsite Age Estimation of Semen stains using fluorescence spectroscopy. Sensors 23. https://doi.org/10.3390/s23136148

Thanakiatkrai P, Yaodam A, Kitpipit T (2013) Age estimation of bloodstains using smartphones and digital image analysis. Forensic Sci Int 233:288–297. https://doi.org/10.1016/j.forsciint.2013.09.027

Article  PubMed  Google Scholar 

Oehmichen M KZ (1984) Postmortale DNA and RNA synthesis.Preliminary studies in human cadavers. Int J Legal Med 91:287–294

Asaghiar F, Williams GA (2020) Evaluating the use of hypoxia sensitive markers for body fluid stain age prediction. Sci Justice 60:547–554. https://doi.org/10.1016/j.scijus.2020.09.001

Article  PubMed  Google Scholar 

Sara C, Zapico GR (2023) A spit in time: identification of saliva stains and assessment of total DNA recovery up to 180 days after deposition. Forensic science, medicine, and pathology

Salzmann AP, Russo G, Kreutzer S, Haas C (2021) Degradation of human mRNA transcripts over time as an indicator of the time since deposition (TsD) in biological crime scene traces. Forensic Sci International: Genet 53. https://doi.org/10.1016/j.fsigen.2021.102524

Gosch A, Bhardwaj A, Courts C (2023) TrACES of time: transcriptomic analyses for the contextualization of evidential stains– identification of RNA markers for estimating time-of-day of bloodstain deposition. Forensic Sci International: Genet 67. https://doi.org/10.1016/j.fsigen.2023.102915

Bauer M, Polzin S, Patzelt D (2003) Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains? Forensic Sci Int 138:94–103. https://doi.org/10.1016/j.forsciint.2003.09.008

Article  PubMed  Google Scholar 

Fang C, Zhou P, Li R et al (2023) Development of a novel forensic age estimation strategy for aged blood samples by combining piRNA and miRNA markers. Int J Legal Med 137:1327–1335. https://doi.org/10.1007/s00414-023-03028-8

Article  PubMed  Google Scholar 

Alshehhi S, Haddrill PR (2020) Evaluating the effect of body fluid mixture on the relative expression ratio of blood-specific RNA markers. Forensic Sci Int 307. https://doi.org/10.1016/j.forsciint.2019.110116

Wei Y, Wang J, Wang Q, Cong B, Li S (2022) The estimation of bloodstain age utilizing circRNAs and mRNAs biomarkers. Forensic Sci Int 338. https://doi.org/10.1016/j.forsciint.2022.111408

Anderson S, Howard B, Hobbs GR, Bishop CP (2005) A method for determining the age of a bloodstain. Forensic Sci Int 148:37–45. https://doi.org/10.1016/j.forsciint.2004.04.071

Article  PubMed  Google Scholar 

Alshehhi S, Haddrill PR (2019) Estimating time since deposition using quantification of RNA degradation in body fluid-specific markers. Forensic Sci Int 298:58–63. https://doi.org/10.1016/j.forsciint.2019.02.046

Article  PubMed  Google Scholar 

KD Weinbrecht JF, Payton M, R Allen (2017) Time-dependent loss of mRNA transcripts from forensic stains. Dovepress 7:1–12

Google Scholar 

Mei S, Zhao M, Liu Y et al (2022) Evaluations and comparisons of microbial diversities in four types of body fluids based on two 16S rRNA gene sequencing methods. Forensic Sci Int 331. https://doi.org/10.1016/j.forsciint.2021.111128

Adserias-Garriga J, Quijada NM, Hernandez M, Rodríguez Lázaro D, Steadman D, Garcia‐Gil LJ (2017) Dynamics of the oral microbiota as a tool to estimate time since death. Mol Oral Microbiol 32:511–516. https://doi.org/10.1111/omi.12191

Article  PubMed  Google Scholar 

Cho H-W, Eom Y-B (2021) Forensic analysis of human microbiome in skin and body fluids based on Geographic Location. Frontiers in Cellular and Infection Microbiology 11. https://doi.org/10.3389/fcimb.2021.695191

Dobay A, Haas C, Fucile G et al (2019) Microbiome-based body fluid identification of samples exposed to indoor conditions. Forensic Sci International: Genet 40:105–113. https://doi.org/10.1016/j.fsigen.2019.02.010

Article  Google Scholar 

Salzmann AP, Arora N, Russo G, Kreutzer S, Snipen L, Haas C (2021) Assessing time dependent changes in microbial composition of biological crime scene traces using microbial RNA markers. Forensic Sci International: Genet 53. https://doi.org/10.1016/j.fsigen.2021.102537

Yu H-J, Xiao CJN, Zang X-M, Zhang C-Y, Zhang X, Qu Y-N, Li Y, Tan Q-W (2020) Structural difference analysis of adult’s intestinal flora basing on the 16S rDNA gene sequencing technology. Eur Rev Med Pharmacol Sci 24:12983–12992

PubMed  Google Scholar 

Zeng Q, An S (2021) Identifying the biogeographic patterns of Rare and Abundant Bacterial communities using different primer sets on the Loess Plateau. Microorganisms 9. https://doi.org/10.3390/microorganisms9010139

Kechin A, Boyarskikh U, Kel A, Filipenko M (2017) cutPrimers: a New Tool for Accurate cutting of primers from reads of targeted next generation sequencing. J Comput Biol 24:1138–1143. https://doi.org/10.1089/cmb.2017.0096

Article  PubMed  Google Scholar 

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

Article  PubMed  PubMed Central  Google Scholar 

DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. https://doi.org/10.1128/aem.03006-05

Article  PubMed  PubMed Central  Google Scholar 

Bokulich NA, Kaehler BD, Rideout JR et al (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6. https://doi.org/10.1186/s40168-018-0470-z

Chao A (1984) Nonparametric estimation of the number of classes in a Population. Scandinavian J Stat Scandinavian J Stat 11:265–270

Google Scholar 

Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27

Simpson EH (1949) Measurement of Diversity. Nature 163:688

Article  Google Scholar 

Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

Article  Google Scholar 

Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144

Article  Google Scholar 

Good IJ (1953) The population frequency of species and the estimation of the population parameters. Biometrics 40:237–246

Article  Google Scholar 

Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative β diversity measures lead to different insights into factors that structure Microbial communities. Appl Environ Microbiol 73:1576–1585. https://doi.org/10.1128/aem.01996-06

Article  PubMed  PubMed Central  Google Scholar 

Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing Microbial communities. Appl Environ Microbiol 71:8228–8235. https://doi.org/10.1128/aem.71.12.8228-8235.2005

Article  PubMed  PubMed Central  Google Scholar 

McDonald D, Price MN, Goodrich J et al (2011) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618. https://doi.org/10.1038/ismej.2011.139

Article  PubMed  PubMed Central  Google Scholar 

Kazunori Sagawa AK, Yoshifumi Saito H, Inoue S, Yasuda M, Nosaka T Tsuji (2003) Production and characterization of a monoclonal antibody for sweat-specific protein and its application for sweat identification. Int J Legal Med 117. https://doi.org/10.1007/s00414-002-0341-8

Article  Google Scholar 

Linus Altmeyer KB, Diana H (2024) Differentiation of five forensically relevant body fluids using a small set of microRNA markers. Electrophoresis 45.

留言 (0)

沒有登入
gif