Transesophageal motor-evoked potentials, a novel method induced by transesophageal spinal cord stimulation, are less sensitive to anesthetics than transcranial motor-evoked potentials

Guzzi G, Ricciuti RA, Della Torre A, Lo Turco E, Lavano A, Longhini F, La Torre D. Intraoperative neurophysiological monitoring in neurosurgery. J Clin Med. 2024;13:2966.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ilhan F, Boulogne S, Morgado A, Dauleac C, André-Obadia N, Jung J. The impact of neurophysiological monitoring during intradural spinal tumor surgery. Cancers (Basel). 2024;16:2192.

Article  CAS  PubMed  Google Scholar 

Jackson ME, Galambas AK, Bauer JM. Intraoperative neuromonitoring for spines at risk during nonspine surgery: a 9-year review. J Pediatr Orthop. 2024;44:e197–202.

Article  PubMed  Google Scholar 

Kobayashi S, Matsuyama Y, Shinomiya K, Kawabata S, Ando M, Kanchiku T, Saito T, Takahashi M, Ito Z, Muramoto A, Fujiwara Y, Kida K, Yamada K, Wada K, Yamamoto N, Satomi K, Tani T. A new alarm point of transcranial electrical stimulation motor evoked potentials for intraoperative spinal cord monitoring: a prospective multicenter study from the spinal cord monitoring working group of the Japanese Society for spine surgery and related research. J Neurosurg Spine. 2014;20:102–7.

Article  PubMed  Google Scholar 

Yoshida G, Ando M, Imagama S, Kawabata S, Yamada K, Kanchiku T, Fujiwara Y, Tadokoro N, Takahashi M, Wada K, Yamamoto N, Kobayashi S, Ushirozako H, Kobayashi K, Yasuda A, Tani T, Matsuyama Y. Alert timing and corresponding intervention with intraoperative spinal cord monitoring for high-risk spinal surgery. Spine (Phila Pa 1976). 2019;44:470–9.

Article  Google Scholar 

Nunes RR, Bersot CDA, Garritano JG. Intraoperative neurophysiological monitoring in neuroanesthesia. Curr Opin Anaesthesiol. 2018;31:532–8.

Article  PubMed  Google Scholar 

Lotto ML, Banoub M, Schubert A. Effects of anesthetic agents and physiologic changes on intraoperative motor evoked potentials. J Neurosurg Anesthesiol. 2004;16:32–42.

Article  PubMed  Google Scholar 

Kawaguchi M, Iida H, Tanaka S, Fukuoka N, Hayashi H, Izumi S, Yoshitani K, Kakinohana M. MEP monitoring guideline working group of the safety committee of the Japanese society of anesthesiologists (JSA). A practical guide for anesthetic management during intraoperative motor evoked potential monitoring. J Anesth. 2020;34:5–28.

Article  PubMed  Google Scholar 

Tsuda K, Shiiya N, Takahashi D, Ohkura K, Yamashita K, Kando Y. Transoesophageal spinal cord stimulation for motor-evoked potentials monitoring: feasibility, safety and stability. Eur J Cardiothorac Surg. 2015;48:245–51.

Article  PubMed  Google Scholar 

Tsuda K, Shiiya N, Takahashi D, Ohkura K, Yamashita K, Kando Y, Arai Y. Transesophageal versus transcranial motor evoked potentials to monitor spinal cord ischemia. J Thorac Cardiovasc Surg. 2016;151:509–17.

Article  PubMed  Google Scholar 

Shiiya N, Tsuda K, Yamanaka K, Takahashi D, Washiyama N, Yamashita K, Kando Y, Ohashi Y. Clinical feasibility and safety of transoesophageal motor-evoked potential monitoring. Eur J Cardiothorac Surg. 2020;57:1076–82.

Article  PubMed  Google Scholar 

Yamanaka K, Tsuda K, Takahashi D, Washiyama N, Yamashita K, Shiiya N. Bipolar transesophageal thoracic spinal cord stimulation: a novel clinically relevant method for motor-evoked potentials. JTCVS Tech. 2020;4:28–35.

Article  PubMed  PubMed Central  Google Scholar 

Kurita T, Kawashima S, Ibrahim Khaleelullah MMS, Nakajima Y. Influence of hemorrhage and subsequent fluid resuscitation on transcranial motor-evoked potentials under desflurane anesthesia in a swine model. J Clin Monit Comput. 2022;36:239–46.

Article  PubMed  Google Scholar 

Kurita T, Kawashima S, Khaleelullah MM, Ibrahim S, Nakajima Y. The influence of haemorrhagic shock on the pharmacokinetic and pharmacodynamic effects of remimazolam in a swine model: a laboratory study. Eur J Anaesthesiol Intensiv Care. 2022;1:e007.

Google Scholar 

Kurita T, Kawashima S, Morita K, Nakajima Y. Intracranial space-occupying lesion inducing intracranial hypertension increases the encephalographic effects of isoflurane in a swine model. J Neurosurg Anesthesiol. 2019;31:70–5.

Article  PubMed  Google Scholar 

Kurita T, Takata K, Morita K, Uraoka M, Sato S. The influence of endotoxemia on the electroencephalographic and antinociceptive effects of isoflurane in a swine model. Anesth Analg. 2010;110:83–8.

Article  CAS  PubMed  Google Scholar 

Kurita T, Takata K, Morita K, Morishima Y, Uraoka M, Katoh T, Sato S. The influence of hemorrhagic shock on the electroencephalographic and immobilizing effects of propofol in a swine model. Anesth Analg. 2009;109:398–404.

Article  CAS  PubMed  Google Scholar 

Katoh T, Suzuki A, Ikeda K. Electroencephalographic derivatives as a tool for predicting the depth of sedation and anesthesia induced by sevoflurane. Anesthesiology. 1998;88:642–50.

Article  CAS  PubMed  Google Scholar 

Ando M, Tamaki T, Maio K, Iwahashi H, Iwasaki H, Yamada H, Tani T, Saito T, Kimura J. The muscle evoked potential after epidural electrical stimulation of the spinal cord as a monitor for the corticospinal tract: studies by collision technique and double train stimulation. J Clin Monit Comput. 2022;36:1053–67.

Article  PubMed  Google Scholar 

Parikh P, Cheongsiatmoy J, Shilian P, Gonzalez AA. Differences in the transcranial motor evoked potentials between proximal and distal lower extremity muscles. J Clin Neurophysiol. 2018;35:155–8.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif