Bone Density of Vertebral Bodies and Ossified Masses in Cervical Ossification of the Posterior Longitudinal Ligament: An Imaging Study Based on MRI, CT, and DEXA

Le HV, Wick JB, Van BW, Klineberg EO (2022) Ossification of the posterior longitudinal ligament: pathophysiology, diagnosis, and management. J Am Acad Orthop Surg 30:820–830. https://doi.org/10.5435/JAAOS-D-22-00049

Article  PubMed  Google Scholar 

Nakajima M, Takahashi A, Tsuji T et al (2014) A genome-wide association study identifies susceptibility loci for ossification of the posterior longitudinal ligament of the spine. Nat Genet 46:1012–1016. https://doi.org/10.1038/ng.3045

Article  CAS  PubMed  Google Scholar 

Xu C, Zhang Z, Liu N et al (2022) Small extracellular vesicle-mediated miR-320e transmission promotes osteogenesis in OPLL by targeting TAK1. Nat Commun 13:2467. https://doi.org/10.1038/s41467-022-29029-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim B, Yoon DH, Shin HC et al (2015) Surgical outcome and prognostic factors of anterior decompression and fusion for cervical compressive myelopathy due to ossification of the posterior longitudinal ligament. Spine J Off J North Am Spine Soc 15:875–884. https://doi.org/10.1016/j.spinee.2015.01.028

Article  Google Scholar 

Chen Z, Liu B, Dong J et al (2016) Comparison of anterior corpectomy and fusion versus laminoplasty for the treatment of cervical ossification of posterior longitudinal ligament: a meta-analysis. Neurosurg Focus 40:E8. https://doi.org/10.3171/2016.3.FOCUS15596

Article  PubMed  Google Scholar 

Yoshii T, Sakai K, Hirai T et al (2016) Anterior decompression with fusion versus posterior decompression with fusion for massive cervical ossification of the posterior longitudinal ligament with a ≥50% canal occupying ratio: a multicenter retrospective study. Spine J Off J North Am Spine Soc 16:1351–1357. https://doi.org/10.1016/j.spinee.2016.07.532

Article  Google Scholar 

Lei T, Wang H, Tong T et al (2016) Enlarged anterior cervical diskectomy and fusion in the treatment of severe localised ossification of the posterior longitudinal ligament. J Orthop Surg 11:129. https://doi.org/10.1186/s13018-016-0449-z

Article  Google Scholar 

Arima H, Naito K, Yamagata T et al (2019) Anterior and posterior segmental decompression and fusion for severely localized ossification of the posterior longitudinal ligament of the cervical spine: technical note. Neurol Med Chir (Tokyo) 59:238–245. https://doi.org/10.2176/nmc.tn.2018-0324

Article  PubMed  Google Scholar 

Compston JE, McClung MR, Leslie WD (2019) Osteoporosis. Lancet Lond Engl 393:364–376. https://doi.org/10.1016/S0140-6736(18)32112-3

Article  CAS  Google Scholar 

He Z, Tung NTC, Makino H et al (2023) Assessment of cervical myelopathy risk in ossification of the posterior longitudinal ligament patients with spinal cord compression based on segmental dynamic versus static factors. Neurospine 20:651–661. https://doi.org/10.14245/ns.2346124.062

Rolvien T, Amling M (2022) Disuse osteoporosis: clinical and mechanistic insights. Calcif Tissue Int 110:592–604. https://doi.org/10.1007/s00223-021-00836-1

Article  CAS  PubMed  Google Scholar 

Han K, You ST, Lee HJ et al (2022) Hounsfield unit measurement method and related factors that most appropriately reflect bone mineral density on cervical spine computed tomography. Skeletal Radiol 51:1987–1993. https://doi.org/10.1007/s00256-022-04050-4

Article  PubMed  Google Scholar 

Huang W, Gong Z, Zheng C et al (2022) Preoperative assessment of bone density using mri-based vertebral bone quality score modified for patients undergoing cervical spine surgery. Glob Spine J. https://doi.org/10.1177/21925682221138261

Soliman MAR, Aguirre AO, Kuo CC et al (2023) A novel cervical vertebral bone quality score independently predicts cage subsidence after anterior cervical diskectomy and fusion. Neurosurgery 92:779–786. https://doi.org/10.1227/neu.0000000000002269

Article  PubMed  Google Scholar 

Hilton B, Gardner EL, Jiang Z et al (2022) Establishing diagnostic criteria for degenerative cervical myelopathy [AO Spine RECODE-DCM Research Priority Number 3]. Glob Spine J 12:55S. https://doi.org/10.1177/21925682211030871

Article  Google Scholar 

Davies BM, Khan DZ, Barzangi K et al (2024) We choose to call it ‘Degenerative Cervical Myelopathy’: Findings of AO Spine RECODE-DCM, an international and multi-stakeholder partnership to agree a standard unifying term and definition for a disease. Glob Spine J 14:503–512. https://doi.org/10.1177/21925682221111780

Article  Google Scholar 

Hsiung W, Lin H-Y, Lin H-H et al (2024) MRI-based lesion quality score assessing ossification of the posterior longitudinal ligament of the cervical spine. Spine J Off J North Am Spine Soc S 24(7):1162–1169. https://doi.org/10.1016/j.spinee.2024.02.007

Ehresman J, Pennington Z, Schilling A et al (2020) Novel MRI-based score for assessment of bone density in operative spine patients. Spine J Off J North Am Spine Soc 20:556–562. https://doi.org/10.1016/j.spinee.2019.10.018

Article  Google Scholar 

Wang Z, Zhong Z, Feng H et al (2023) The impact of disease time, cervical alignment and range of motion on cervical vertebral Hounsfield unit value in surgery patients with cervical spondylosis. J Orthop Surg 18:187. https://doi.org/10.1186/s13018-023-03675-y

Article  Google Scholar 

Schober P, Boer C, Schwarte LA (2018) Correlation coefficients: appropriate use and interpretation. Anesth Analg 126:1763–1768. https://doi.org/10.1213/ANE.0000000000002864

Article  PubMed  Google Scholar 

Kottner J, Audige L, Brorson S et al (2011) Guidelines for reporting reliability and agreement studies (GRRAS) were proposed. Int J Nurs Stud 48:661–671. https://doi.org/10.1016/j.ijnurstu.2011.01.016

Article  PubMed  Google Scholar 

Cai J, Han W, Yang T et al (2024) MRI-based vertebral bone quality score can predict the imminent new vertebral fracture after vertebral augmentation. Neurosurgery. https://doi.org/10.1227/neu.0000000000002901

Article  PubMed  Google Scholar 

Pu H-Y, Song X-Z, Wang B et al (2024) Cervical vertebral Hounsfield units are a better predictor of Zero-P subsidence than the T-score of DXA in patients following single-level anterior cervical discectomy and fusion with zero-profile anchored spacer. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 33:216–223. https://doi.org/10.1007/s00586-023-07934-8

Article  Google Scholar 

Bernatz JT, Pumford A, Goh BC et al (2024) MRI vertebral bone quality correlates with interbody cage subsidence after anterior cervical discectomy and fusion. Clin Spine Surg 37:149–154. https://doi.org/10.1097/BSD.0000000000001623

Article  PubMed  Google Scholar 

Liu X, Yan Z, Cai J, et al (2022) Glucose- and glutamine-dependent bioenergetics sensitize bone mechanoresponse after unloading by modulating osteocyte calcium dynamics. J Clin Invest 133:e164508. https://doi.org/10.1172/JCI164508

Doi T, Hirai S, Kaneko M et al (2020) Bone strength of the proximal femur in healthy subjects with ossification of the posterior longitudinal ligament. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 31:757–763. https://doi.org/10.1007/s00198-019-05253-7

Article  CAS  Google Scholar 

Lu M, Tang Y, Geng X et al (2024) MRI-based vertebral bone quality score in cervical ossification of the posterior longitudinal ligament: a comparison with cervical spondylotic myelopathy using propensity score matching. Spine J Off J North Am Spine Soc S1529–9430(24):00082–00092. https://doi.org/10.1016/j.spinee.2024.02.015

Article  Google Scholar 

Fujita R, Endo T, Takahata M et al (2023) High whole-body bone mineral density in ossification of the posterior longitudinal ligament. Spine J Off J North Am Spine Soc 23:1461–1470. https://doi.org/10.1016/j.spinee.2023.06.400

Article  Google Scholar 

Chen H, Zhu X, Zhou Q et al (2024) Utility of MRI-based vertebral bone quality scores and CT-based Hounsfield unit values in vertebral bone mineral density assessment for patients with diffuse idiopathic skeletal hyperostosis. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 35:705–715. https://doi.org/10.1007/s00198-023-06999-x

Article  CAS  Google Scholar 

Rand T, Schneider B, Grampp S et al (1997) Influence of osteophytic size on bone mineral density measured by dual X-ray absorptiometry. Acta Radiol Stockh Swed 38:210–213. https://doi.org/10.1080/02841859709172051

Article  CAS  Google Scholar 

Hirai T, Yoshii T, Nagoshi N et al (2018) Distribution of ossified spinal lesions in patients with severe ossification of the posterior longitudinal ligament and prediction of ossification at each segment based on the cervical OP index classification: a multicenter study (JOSL CT study). BMC Musculoskelet Disord 19:107. https://doi.org/10.1186/s12891-018-2009-7

Article  PubMed  PubMed Central  Google Scholar 

Sohn S, Chung CK (2013) Increased bone mineral density and decreased prevalence of osteoporosis in cervical ossification of the posterior longitudinal ligament: a case-control study. Calcif Tissue Int 92:28–34. https://doi.org/10.1007/s00223-012-9662-x

Article  CAS  PubMed  Google Scholar 

Hashimoto M, Hirai T, Sakai K et al (2024) Comparison of postoperative complications and outcomes in anterior cervical spine surgery: ossification of the posterior longitudinal ligament versus cervical spondylotic myelopathy. Clin Spine Surg 37:170–177. https://doi.org/10.1097/BSD.0000000000001612

Article  PubMed  Google Scholar 

Wang L, Jiang W, Zhao S et al (2024) Sorafenib inhibits ossification of the posterior longitudinal ligament by blocking LOXL2-mediated vascularization. Bone Res 12:1–18. https://doi.org/10.1038/s41413-024-00327-7

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif