Circ_0008440 Inhibits Proliferation and Promotes Apoptosis of Trophoblast Cells through the miR-194-5p/PFKFB2 Axis

Turbeville HR, Sasser JM. Preeclampsia beyond pregnancy: long-term consequences for mother and child. Am J Physiol Ren Physiol. 2020;318(6):F1315–26.

Article  CAS  Google Scholar 

Chien Y-A, Chou H-C, Yang C-C, Wang Y-S, Wei Y-S, Chan H-L. Proteomic analysis of Tumor-specific biomarkers in Colon cancer. Curr Proteomics. 2022;19(4):323–43.

Article  CAS  Google Scholar 

Dayan N, Kaur A, Elharram M, Rossi AM, Pilote L. Impact of Preeclampsia on Long-Term cognitive function. Hypertension. 2018;72(6):1374–80.

Article  CAS  PubMed  Google Scholar 

Howe L, Hammer E, Badger G, Bernstein IM. Effect of pregnancy interval on second pregnancy blood pressure following prior Preeclampsia. Reprod Sci. 2018;25(5):727–32.

Article  PubMed  Google Scholar 

Pan ML, Chen LR, Tsao HM, Chen KH. Risk of gestational hypertension-preeclampsia in women with preceding endometriosis: a nationwide population-based study. PLoS ONE. 2017;12(7):e0181261.

Article  PubMed  PubMed Central  Google Scholar 

Hoodbhoy Z, Mohammed N, Nathani KR et al. The impact of maternal preeclampsia and hyperglycemia on the Cardiovascular Health of the offspring: a systematic review and Meta-analysis. Am J Perinatol. 2021.

Johnston RC, Stephenson ML, Paraghamian S, et al. Assessing progression from mild to severe preeclampsia in expectantly managed preterm parturients. Pregnancy Hypertens. 2016;6(4):340–3.

Article  CAS  PubMed  Google Scholar 

Ram M, Anteby M, Weiniger CF, et al. Acute pulmonary edema due to severe preeclampsia in advanced maternal age women. Pregnancy Hypertens. 2021;25:150–5.

Article  PubMed  Google Scholar 

Khashan AS, Evans M, Kublickas M, et al. Preeclampsia and risk of end stage kidney disease: a Swedish nationwide cohort study. PLoS Med. 2019;16(7):e1002875.

Article  PubMed  PubMed Central  Google Scholar 

Nahum Sacks K, Friger M, Shoham-Vardi I, et al. Prenatal exposure to preeclampsia as an independent risk factor for long-term cardiovascular morbidity of the offspring. Pregnancy Hypertens. 2018;13:181–6.

Article  PubMed  Google Scholar 

Paauw ND, Lely AT. Cardiovascular sequels during and after Preeclampsia. Adv Exp Med Biol. 2018;1065:455–70.

Article  PubMed  Google Scholar 

Charlton F, Tooher J, Rye KA, Hennessy A. Cardiovascular risk, lipids and pregnancy: preeclampsia and the risk of later life cardiovascular disease. Heart Lung Circ. 2014;23(3):203–12.

Article  PubMed  Google Scholar 

Fang L, Gao Y, Wang Z, et al. EGF stimulates human trophoblast cell invasion by downregulating ID3-mediated KISS1 expression. Cell Commun Signal. 2021;19(1):101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tasta O, Swiader A, Grazide MH, et al. A role for 4-hydroxy-2-nonenal in premature placental senescence in preeclampsia and intrauterine growth restriction. Free Radic Biol Med. 2021;164:303–14.

Article  CAS  PubMed  Google Scholar 

Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE. 2012;7(2):e30733.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8.

Article  CAS  PubMed  Google Scholar 

Xu D, Ma X, Sun C et al. Emerging roles of circular RNAs in neuropathic pain. Cell Prolif 2021:e13139.

Mafi A, Yadegar N, Salami M, Salami R, Vakili O, Aghadavod E. Circular RNAs; powerful microRNA sponges to overcome diabetic nephropathy. Pathol Res Pract. 2021;227:153618.

Article  CAS  PubMed  Google Scholar 

Ou Y, Liu M, Zhu L, et al. The expression profile of circRNA and its potential regulatory targets in the placentas of severe pre-eclampsia. Taiwan J Obstet Gynecol. 2019;58(6):769–77.

Article  PubMed  Google Scholar 

Lin Z, Lu F, Ma X, Xia X, Zou F, Jiang J. Roles of circular RNAs in the pathogenesis of intervertebral disc degeneration (review). Exp Ther Med. 2021;22(5):1221.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang J, Zhang X, Cao J, et al. Circular RNA UBE2Q2 promotes malignant progression of gastric cancer by regulating signal transducer and activator of transcription 3-mediated autophagy and glycolysis. Cell Death Dis. 2021;12(10):910.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou W, Wang H, Wu X, et al. The profile analysis of circular RNAs in human placenta of preeclampsia. Exp Biol Med (Maywood). 2018;243(14):1109–17.

Article  CAS  PubMed  Google Scholar 

Munjas J, Sopic M, Stefanovic A et al. Non-Coding RNAs in Preeclampsia-Molecular Mechanisms and Diagnostic Potential. Int J Mol Sci. 2021;22(19).

Hayek H, Kosmider B, Bahmed K. The role of miRNAs in alveolar epithelial cells in emphysema. Biomed Pharmacother. 2021;143:112216.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park JH, Kho C. MicroRNAs and Calcium Signaling in Heart Disease. Int J Mol Sci. 2021;22(19).

Liu X, Yang B, Zhang Y, et al. miR-30a-5p inhibits osteogenesis and promotes periodontitis by targeting Runx2. BMC Oral Health. 2021;21(1):513.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Huang G, Zhang Y, et al. MiR-942 decreased before 20 weeks gestation in women with preeclampsia and was associated with the pathophysiology of preeclampsia in vitro. Clin Exp Hypertens. 2017;39(2):108–13.

Article  CAS  PubMed  Google Scholar 

Li X, Yang R, Xu Y, Zhang Y. Circ_0001438 participates in the pathogenesis of preeclampsia via the circ_0001438/miR-942/NLRP3 regulatory network. Placenta. 2021;104:40–50.

Article  CAS  PubMed  Google Scholar 

Ou Y, Zhu L, Wei X, et al. Circular RNA circ_0111277 attenuates human trophoblast cell invasion and migration by regulating miR-494/HTRA1/Notch-1 signal pathway in pre-eclampsia. Cell Death Dis. 2020;11(6):479.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kotowski K, Rosik J, Machaj F et al. Role of PFKFB3 and PFKFB4 in Cancer: genetic basis, impact on Disease Development/Progression, and potential as therapeutic targets. Cancers (Basel). 2021;13(4).

Ellis R, Katerelos M, Choy SW, et al. Increased expression and phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoforms in urinary exosomes in pre-eclampsia. J Transl Med. 2019;17(1):60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He Z, Ruan X, Liu X, et al. FUS/circ_002136/miR-138-5p/SOX13 feedback loop regulates angiogenesis in Glioma. J Exp Clin Cancer Res. 2019;38(1):65.

Article  PubMed  PubMed Central  Google Scholar 

Jin C, Fu WL, Zhang DD, et al. The protective role of IL-1Ra on intestinal ischemia reperfusion injury by anti-oxidative stress via Nrf2/HO-1 pathway in rat. Biomedical J. 2019;42(1):36–45.

Article  PubMed  PubMed Central  Google Scholar 

Sadeghi M, Cava C, Mousavi P, Sabetian S, Morowvat Hossein M. Construction of Prognostic ceRNA Network Landscape in breast Cancer to explore impacting genes on drug response by Integrative Bioinformatics Analysis. Lett Drug Des Discovery. 2024;21(12):2467–81.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif