Machine learning in predicting heart failure survival: a review of current models and future prospects

Denolin H, Kuhn H, Krayenbuehl H, Loogen F, Reale A (1983) The definition of heart failure. Eur Heart J 4(7):445–448

Article  CAS  PubMed  Google Scholar 

Gheorghiade M, De Luca L, Fonarow GC, Filippatos G, Metra M, Francis GS (2005) Pathophysiologic targets in the early phase of acute heart failure syndromes. Am J Cardiol 96(6):11–17

Article  Google Scholar 

Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS (2022) Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res 118(17):3272–3287

Article  CAS  Google Scholar 

Bozkurt B, Ahmad T, Alexander KM, Baker WL, Bosak K, Breathett K et al (2023) Heart failure epidemiology and outcomes statistics a report of the Heart Failure Society of America. J Card Fail 29(10):1412–1451

Article  PubMed  PubMed Central  Google Scholar 

Balogh EP, Miller BT, Ball JR (eds) (2015) Improving diagnosis in health care. National Academies Press, Washington, D.C.

Google Scholar 

Rahimi K, Bennett D, Conrad N, Williams TM, Basu J, Dwight J et al (2014) Risk prediction in patients with heart failure. JACC Heart Fail 2(5):440–6

Article  PubMed  Google Scholar 

McKie PM, Cataliotti A, Lahr BD, Martin FL, Redfield MM, Bailey KR et al (2010) The prognostic value of N-terminal pro-B-type natriuretic peptide for death and cardiovascular events in healthy normal and stage A/B heart failure subjects. J Am Coll Cardiol 55(19):2140–7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sartipy U, Dahlström U, Edner M, Lund LH (2013) Predicting survival in heart failure: validation of the MAGGIC heart failure risk score in 51 043 patients from the Swedish Heart Failure Registry. Eur J Heart Fail 16(2):173–179

Article  PubMed  Google Scholar 

Newaz A, Ahmed N, Shahriyar HF (2021) Survival prediction of heart failure patients using machine learning techniques. Inform Med Unlocked 26:100772

Article  Google Scholar 

Averbuch T, Sullivan K, Sauer A, Mamas MA, Voors AA, Gale CP et al (2022) Applications of artificial intelligence and machine learning in heart failure. Eur Heart J Digit Health 3(2):311–322

Article  PubMed  PubMed Central  Google Scholar 

Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP (2020) Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol 9(2):14–24

PubMed  PubMed Central  Google Scholar 

Kukar M, Grošelj C (2005) Transductive machine learning for reliable medical diagnostics. J Med Syst 29(1):13–32

Article  PubMed  Google Scholar 

Levy JJ, O’Malley AJ (2020) Don’t dismiss logistic regression: the case for sensible extraction of interactions in the era of machine learning. BMC Med Res Methodol 20(1):171

Article  PubMed  PubMed Central  Google Scholar 

Averbuch T, Lee SF, Mamas MA, Oz UE, Perez R, Connolly SJ et al (2021) Derivation and validation of a two-variable index to predict 30-day outcomes following heart failure hospitalization. ESC Heart Fail 8(4):2690–2697

Article  PubMed  PubMed Central  Google Scholar 

Ahmad T, Lund LH, Rao P, Ghosh R, Warier P, Vaccaro B et al (2018) Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients. J Am Heart Assoc 7(8):e008081

Article  PubMed  PubMed Central  Google Scholar 

Sullivan K, Mamas MA, Van Spall HGC (2019) Machine learning could facilitate optimal titration of guideline-directed medical therapy in heart failure. J Am Coll Cardiol 74(10):1424–1425

Article  PubMed  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 88:105906

Google Scholar 

Pettricrew M, Roberts H (2006) Systematic reviews in the social sciences, a practical guide. Blackwell Publishing, Malden, p 38

Book  Google Scholar 

Malik A, Brito D, Vaqar S, et al (2024) Congestive heart failure. In: StatPearls. Treasure Island (FL): StatPearls Publishing. [Internet, Updated 2023 Nov 5], Available from: https://www.ncbi.nlm.nih.gov/books/NBK430873/

Okada A, Kaneko H, Konishi M, Kamiya K, Sugimoto T, Matsuoka S, Yokota I, Suzuki Y, Yamaguchi S, Itoh H, Fujiu K, Michihata N, Jo T, Matsui H, Fushimi K, Takeda N, Morita H, Yasunaga H, Komuro I (2024) A machine-learning-based prediction of non-home discharge among acute heart failure patients. Clin Res Cardiol. 113(4):522–532. https://doi.org/10.1007/s00392-023-02209-0

Article  PubMed  Google Scholar 

Jang SY, Park JJ, Adler E, Eshraghian E, Ahmad FS, Campagnari C, Yagil A, Greenberg B (2023) Mortality prediction in patients with or without heart failure using a machine learning model. JACC Adv 2(7):100554. https://doi.org/10.1016/j.jacadv.2023.100554.PMID:38939487;PMCID:PMC11198694

Article  PubMed  PubMed Central  Google Scholar 

Yang H, Tian J, Meng B, Wang K, Zheng C, Liu Y, Yan J, Han Q, Zhang Y (2021) Application of extreme learning machine in the survival analysis of chronic heart failure patients with high percentage of censored survival time. Front Cardiovasc Med 29(8):726516. https://doi.org/10.3389/fcvm.2021.726516.PMID:34778396;PMCID:PMC8586069

Article  Google Scholar 

Chicco D, Jurman G (2020) Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Med Inform Decis Mak 20(1):16. https://doi.org/10.1186/s12911-020-1023-5.PMID:32013925;PMCID:PMC6998201

Article  PubMed  PubMed Central  Google Scholar 

Kyodo A, Kanaoka K, Keshi A, Nogi M, Nogi K, Ishihara S, Kamon D, Hashimoto Y, Nakada Y, Ueda T, Seno A, Nishida T, Onoue K, Soeda T, Kawakami R, Watanabe M, Nagai T, Anzai T, Saito Y (2023) Heart failure with preserved ejection fraction phenogroup classification using machine learning. ESC Heart Fail 10(3):2019–2030. https://doi.org/10.1002/ehf2.14368

Article  PubMed  PubMed Central  Google Scholar 

Moreno-Sánchez PA (2023) Improvement of a prediction model for heart failure survival through explainable artificial intelligence. Front Cardiovasc Med 1(10):1219586. https://doi.org/10.3389/fcvm.2023.1219586.PMID:37600061;PMCID:PMC10434534

Article  Google Scholar 

Sun R, Wang X, Jiang H, Yan Y, Dong Y, Yan W, Luo X, Miu H, Qi L, Huang Z (2022) Prediction of 30-day mortality in heart failure patients with hypoxic hepatitis: development and external validation of an interpretable machine learning model. Front Cardiovasc Med 28(9):1035675. https://doi.org/10.3389/fcvm.2022.1035675.PMID:36386374;PMCID:PMC9649827

Article  Google Scholar 

Ishaq A, Sadiq S, Umer M, Ullah S, Mirjalili S, Rupapara V et al (2021) Improving the prediction of heart failure patients’ survival using SMOTE and effective data mining techniques. IEEE Access 9:39707–39716

Article  Google Scholar 

Almazroi AA (2022) Survival prediction among heart patients using machine learning techniques. Math Biosci Eng 19(1):134–145. https://doi.org/10.3934/mbe.2022007

Article  PubMed  Google Scholar 

Awan SE, Bennamoun M, Sohel F, Sanfilippo FM, Dwivedi G (2019) Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics. ESC Heart Fail 6(2):428–435. https://doi.org/10.1002/ehf2.12419

Article  PubMed  PubMed Central  Google Scholar 

What is Random Forest? [Beginner’s Guide + Examples]. careerfoundry.com. Available from: https://careerfoundry.com/en/blog/data-analytics/what-is-random-forest/#:~:text=Random%20Forest%20grows%20multiple%20decision. Accessed 2 Sept 2024

Koulaouzidis G, Iakovidis DK, Clark AL (2016) Telemonitoring predicts in advance heart failure admissions. Int J Cardiol 216:78–84

Article  CAS  PubMed  Google Scholar 

Mortazavi BJ, Downing NS, Bucholz EM, Dharmarajan K, Manhapra A, Li S-X, Negahban SN, Krumholz HM (2016) Analysis of machine learning techniques for heart failure readmissions. Circ Cardiovasc Qual Outcomes 9:629–640

Article  PubMed  PubMed Central  Google Scholar 

Okada A, Hashimoto Y, Goto T et al (2022) A machine learning-based predictive model to identify patients who failed to attend a follow-up visit for diabetes care after recommendations from a national screening program. Diabetes Care

Shin S, Austin PC, Ross HJ, Abdel-Qadir H, Freitas C, Tomlinson G et al (2020) Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality. ESC Heart Fail 8(1):106–15

Article  PubMed  PubMed Central  Google Scholar 

Washida K, Kato T, Ozasa N et al (2021) Risk factors and clinical outcomes of nonhome discharge in patients with acute decompensated heart failure: an observational study. J Am Heart Assoc 10:e020292

Article 

留言 (0)

沒有登入
gif