The first case of a competitive basketball player affected by carnitine palmitoyl transferase II deficiency presenting an undescribed compound heterozygous genetic mutation

Achten J, Gleeson M, Jeukendrup AE (2002) Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sports Exerc 34(1):92–97. https://doi.org/10.1097/00005768-200201000-00015

Article  PubMed  Google Scholar 

Achten J, Venables MC, Jeukendrup AE (2003) Fat oxidation rates are higher during running compared with cycling over a wide range of intensities. Metabolism 52(6):747–752. https://doi.org/10.1016/s0026-0495(03)00068-4

Article  PubMed  Google Scholar 

Andres S, Ziegenhagen R, Trefflich I, Pevny S, Schultrich K, Braun H, Schänzer W, Hirsch-Ernst KI, Schäfer B, Lampen A (2017) Creatine and creatine forms intended for sports nutrition. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201600772

Article  PubMed  Google Scholar 

Arbab R, Erb C, Joy J, Zainah H, Samarneh MM (2022) Physiologic response to exercise or rhabdomyolysis? Creatine phosphokinase elevation in 16 asymptomatic firefighters. Am J Case Rep 23:e937084. https://doi.org/10.12659/AJCR.937084

Article  PubMed  PubMed Central  Google Scholar 

Bäcker HC, Richards JT, Kienzle A, Cunningham J, Braun KF (2023) Exertional rhabdomyolysis in athletes: systematic review and current perspectives. Clin J Sport Med 33(2):187–194. https://doi.org/10.1097/JSM.0000000000001082

Article  PubMed  Google Scholar 

Baeza-Trinidad R (2022) Rhabdomyolysis: a syndrome to be considered. Med Clin (Barc) 158(6):277–283. https://doi.org/10.1016/j.medcli.2021.09.025

Article  PubMed  Google Scholar 

Bessa A, Nissenbaum M, Monteiro A, Gandra PG, Nunes LS, Bassini-Cameron A, Werneck-de-Castro JP, de Macedo DV, Cameron LC (2008) High-intensity ultraendurance promotes early release of muscle injury markers. Br J Sports Med 42(11):889–893. https://doi.org/10.1136/bjsm.2007.043786

Article  PubMed  Google Scholar 

Biasioli S, Foroni R, Cavallini L, Petrosino L (2001) Long term analysis changes of 35 biochemicals and bioelectrical parameters in a dialytic population. ASAIO J 47(2):152

Article  Google Scholar 

Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J (2004) Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med 25(5–6):495–520. https://doi.org/10.1016/j.mam.2004.06.004

Article  PubMed  Google Scholar 

Booth FW, Roberts CK, Laye MJ (2012) Lack of exercise is a major cause of chronic diseases. Compr Physiol 2(2):1143–1211. https://doi.org/10.1002/cphy.c110025

Article  PubMed  PubMed Central  Google Scholar 

Calleja-González J, Terrados N, Mielgo-Ayuso J, Delextrat A, Jukic I, Vaquera A, Torres L, Schelling X, Stojanovic M, Ostojic SM (2016) Evidence-based post-exercise recovery strategies in basketball. Phys Sportsmed 44(1):74–78. https://doi.org/10.1080/00913847.2016.1102033

Article  PubMed  Google Scholar 

Cheval B, Sieber S, Guessous I, Orsholits D, Courvoisier DS, Kliegel M, Stringhini S, Swinnen SP, Burton-Jeangros C, Cullati S, Boisgontier MP (2018) Effect of early- and adult-life socioeconomic circumstances on physical inactivity. Med Sci Sports Exerc 50(3):476–485. https://doi.org/10.1249/mss.0000000000001472

Article  PubMed  Google Scholar 

CoskunBenlidayi I, Gupta L (2021) The pathophysiological effects of exercise in the management of idiopathic inflammatory myopathies: a scoping review. Int J Rheum Dis 24(7):896–903. https://doi.org/10.1111/1756-185x.14104

Article  Google Scholar 

Crisafulli O, Baroscelli M, Grattarola L, Tansini G, Zampella C, D’Antona G (2022) Case report: Personalized adapted motor activity in a COVID-19 patient complicated by critical illness polyneuropathy and myopathy. Front Physiol 13:1035255. https://doi.org/10.3389/fphys.2022.1035255

Article  PubMed  PubMed Central  Google Scholar 

Crisafulli O, Lacetera J, Bottoni G, Berardinelli A, Grattarola L, Veltroni M, Acquadro S, Negro M, Lavaselli E, D’Antona G (2024) Case report: A creatine kinase-borg scale values-based approach to tailor physical training in a central core myopathy patient. Front Physiol 15:1404657. https://doi.org/10.3389/fphys.2024.1404657

Article  PubMed  PubMed Central  Google Scholar 

Czuba M, Zając A, Maszczyk A, Roczniok R, Poprzęcki S, Garbaciak W, Zając T (2013) The effects of high intensity interval training in normobaric hypoxia on aerobic capacity in basketball players. J Hum Kinet 39:103–114. https://doi.org/10.2478/hukin-2013-0073

Article  PubMed  PubMed Central  Google Scholar 

Delextrat A, Gruet M, Bieuzen F (2018) Effects of small-sided games and high-intensity interval training on aerobic and repeated sprint performance and peripheral muscle oxygenation changes in Elite junior basketball players. J Strength Cond Res 32(7):1882–1891. https://doi.org/10.1519/jsc.0000000000002570

Article  PubMed  Google Scholar 

Deschauer M, Wieser T, Zierz S (2005) Muscle carnitine palmitoyltransferase II deficiency: clinical and molecular genetic features and diagnostic aspects. Arch Neurol 62(1):37–41. https://doi.org/10.1001/archneur.62.1.37

Article  PubMed  Google Scholar 

DRI Dietary Reference Intakes (2000) Applications in Dietary Assessment. National Academies Press (US), Washington (DC)

Fanin M, Anichini A, Cassandrini D, Fiorillo C, Scapolan S, Minetti C, Cassanello M, Donati MA, Siciliano G, D’Amico A, Lilliu F, Bruno C, Angelini C (2012) Allelic and phenotypic heterogeneity in 49 Italian patients with the muscle form of CPT-II deficiency. Clin Genet 82(3):232–239. https://doi.org/10.1111/j.1399-0004.2011.01786.x

Article  PubMed  Google Scholar 

Figueira B, Gonçalves B, Abade E, Paulauskas R, Masiulis N, Kamarauskas P, Sampaio J (2021) Repeated Sprint Ability in Elite basketball players: the effects of 10 × 30 m vs. 20 × 15 m exercise protocols on physiological variables and sprint performance. J Hum Kinet 77:181–189. https://doi.org/10.2478/hukin-2020-0048

Article  PubMed  PubMed Central  Google Scholar 

Frayn KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol 55(2):628–634. https://doi.org/10.1152/jappl.1983.55.2.628

Article  PubMed  Google Scholar 

Giugliano D, Maiorino MI, Bellastella G, Esposito K (2018) More sugar? No, thank you! The elusive nature of low carbohydrate diets. Endocrine 61(3):383–387. https://doi.org/10.1007/s12020-018-1580-x

Article  PubMed  Google Scholar 

Guthrie N, Runyan JW, Clark G, Marvin O (1964) Carbohydrate intake and respiratory quotient. Nutr Rev 22:105–107. https://doi.org/10.1111/j.1753-4887.1964.tb04848.x

Article  PubMed  Google Scholar 

Hargreaves M, Spriet LL (2018) Exercise metabolism: fuels for the fire. Cold Spring Harb Perspect Med 8(8):a029744. https://doi.org/10.1101/cshperspect.a029744

Article  PubMed  PubMed Central  Google Scholar 

Isackson PJ, Bennett MJ, Vladutiu GD (2006) Identification of 16 new disease-causing mutations in the CPT2 gene resulting in carnitine palmitoyltransferase II deficiency. Mol Genet Metab 89(4):323–331. https://doi.org/10.1016/j.ymgme.2006.08.004

Article  PubMed  Google Scholar 

Ismail I, Keating SE, Baker MK, Johnson NA (2012) A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes Rev 13(1):68–91. https://doi.org/10.1111/j.1467-789x.2011.00931.x

Article  PubMed  Google Scholar 

Jeukendrup AE, Thielen JJ, Wagenmakers AJ, Brouns F, Saris WH (1998) Effect of medium-chain triacylglycerol and carbohydrate ingestion during exercise on substrate utilization and subsequent cycling performance. Am J Clin Nutr 67(3):397–404. https://doi.org/10.1093/ajcn/67.3.397

Article  PubMed  Google Scholar 

Joshi PR, Zierz S (2020) Muscle carnitine palmitoyltransferase II (CPT II) deficiency: a conceptual approach. Molecules 25(8):1784. https://doi.org/10.3390/molecules25081784

Article  PubMed  PubMed Central  Google Scholar 

Joshi PR, Deschauer M, Zierz S (2014) Carnitine palmitoyltransferase II (CPT II) deficiency: genotype-phenotype analysis of 50 patients. J Neurol Sci 338(1–2):107–111. https://doi.org/10.1016/j.jns.2013.12.026

Article  PubMed  Google Scholar 

Karunanidhi A, Van’t Land C, Rajasundaram D, Grings M, Vockley J, Mohsen AW (2022) Medium branched chain fatty acids improve the profile of tricarboxylic acid cycle intermediates in mitochondrial fatty acid β-oxidation deficient cells: a comparative study. J Inherit Metab Dis 45(3):541–556. https://doi.org/10.1002/jimd.12480

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif