Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39:1211–33. https://doi.org/10.1128/AAC.39.6.1211.
Article CAS PubMed PubMed Central Google Scholar
Tamma PD, Doi Y, Bonomo RA, Johnson JK, Simner PJ. A primer on AmpC β-Lactamases: necessary knowledge for an increasingly multidrug-resistant world. Clin Infect Dis. 2019;69:1446–55. https://doi.org/10.1093/cid/ciz173.
Article CAS PubMed PubMed Central Google Scholar
Kohlmann R, Bähr T, Gatermann SG. Species-specific mutation rates for ampC derepression in Enterobacterales with chromosomally encoded inducible AmpC β-lactamase. J Antimicrob Chemother. 2018;73:1530–6. https://doi.org/10.1093/jac/dky084.
Article CAS PubMed Google Scholar
Choi S-H, Jung EL, Su JP, Choi S-H, Lee S-O, Jeong J-Y, et al. Emergence of antibiotic resistance during therapy for infections caused by Enterobacteriaceae producing AmpC β-lactamase: implications for antibiotic use. Antimicrob Agents Chemother. 2008;52:995–1000. https://doi.org/10.1128/AAC.01083-07.
Article CAS PubMed Google Scholar
Power P, Galleni M, Ayala JA, Gutkind G. Biochemical and molecular characterization of three new variants of AmpC β-lactamases from Morganella morganii. Antimicrob Agents Chemother. 2006;50:962–7. https://doi.org/10.1128/AAC.50.3.962-967.2006.
Article CAS PubMed PubMed Central Google Scholar
Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, Pascual A. Treatment of infections caused by extended-spectrum-beta-lactamase-, ampC-, and carbapenemase-producing enterobacteriaceae. Clin Microbiol Rev. 2018;e00079–17. https://doi.org/10.1128/CMR.00079-17.
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious diseases society of America 2023 guidance on the treatment of antimicrobial resistant gram-negative infections. Clin Infect Dis. 2023;ciad428. https://doi.org/10.1093/cid/ciad428.
Paul M, Carrara E, Retamar P, Tängdén T, Bitterman R, Bonomo RA, et al. European Society of Clinical Microbiology and Infectious diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin Microbiol Infect. 2022;28:521–47. https://doi.org/10.1016/j.cmi.2021.11.025.
Article CAS PubMed Google Scholar
Harris PNA, Wei JY, Shen AW, Abdile AA, Paynter S, Huxley RR, et al. Carbapenems versus alternative antibiotics for the treatment of bloodstream infections caused by Enterobacter, Citrobacter or Serratia species: a systematic review with meta-analysis. J Antimicrob Chemother. 2016;71:296–306. https://doi.org/10.1093/jac/dkv346.
Article CAS PubMed Google Scholar
Moher D. Preferred reporting items for systematic reviews and Meta-analyses: the PRISMA Statement. Ann Intern Med. 2013;151(4):264–9. https://doi.org/10.7326/0003-4819-151-4-200908180-00135.
Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng H-Y, Corbett MS, Eldridge SM, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stew HJ. RoB 2: a revised Cochrane risk-of-bias tool for randomized trials. BMJ. 2019;366:l4898.
Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M. The Newcastle–Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute; 2014. https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Last accessed 12 September 2024.
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88. https://doi.org/10.1016/0197-2456(86)90046-2.
Article CAS PubMed Google Scholar
Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.
Article CAS PubMed PubMed Central Google Scholar
Deal EN, Micek ST, Ritchie DJ, Reichley RM, Dunne WM Jr., Kollef MH. Predictors of in-hospital mortality for bloodstream infections caused by Enterobacter species or Citrobacter freundii. Pharmacotherapy. 2007;27:191–9. https://doi.org/10.1592/phco.27.2.191.
Hilty M, Sendi P, Seiffert SN, Droz S, Perreten V, Hujer AM, et al. Characterisation and clinical features of Enterobacter cloacae bloodstream infections occurring at a tertiary care university hospital in Switzerland: is cefepime adequate therapy? Int J Antimicrob Agents. 2013;41:236–49. https://doi.org/10.1016/j.ijantimicag.2012.10.022.
Article CAS PubMed PubMed Central Google Scholar
Chaubey VP, Pitout JDD, Dalton B, Gregson DB, Ross T, Laupland KB. Clinical and microbiological characteristics of bloodstream infections due to AmpC β-lactamase producing Enterobacteriaceae: an active surveillance cohort in a large centralized Canadian region. BMC Infect Dis. 2014;14:647. https://doi.org/10.1186/s12879-014-0647-4.
Article PubMed PubMed Central Google Scholar
Lee N-Y, Lee C-C, Li C-W, Li M-C, Chen P-L, Chang C-M, et al. Cefepime therapy for monomicrobial Enterobacter cloacae bacteremia: unfavorable outcomes in patients infected by cefepime-susceptible dose-dependent isolates. Antimicrob Agents Chemother. 2015;59:7558–63. https://doi.org/10.1128/AAC.01477-15.
Article CAS PubMed PubMed Central Google Scholar
Cheng L, Nelson BC, Mehta M, Seval N, Park S, Giddins MJ, et al. Piperacillin-Tazobactam versus other antibacterial agents for treatment of bloodstream infections due to AmpC β-Lactamase-producing enterobacteriaceae. Antimicrob Agents Chemother. 2017;61:e00276–17. https://doi.org/10.1128/AAC.00276-17.
Article PubMed PubMed Central Google Scholar
McKamey L, Venugopalan V, Cherabuddi K, Borgert S, Voils S, Shah K, et al. Assessing antimicrobial stewardship initiatives: clinical evaluation of cefepime or piperacillin/tazobactam in patients with bloodstream infections secondary to AmpC-producing organisms. Int J Antimicrob Agents. 2018;52:719–23. https://doi.org/10.1016/j.ijantimicag.2018.08.007.
Article CAS PubMed Google Scholar
Tan SH, Ng TM, Chew KL, Yong J, Wu JE, Yap MY, et al. Outcomes of treating AmpC-producing enterobacterales bacteraemia with carbapenems vs. non-carbapenems. Int J Antimicrob Agents. 2020;55:105860. https://doi.org/10.1016/j.ijantimicag.2019.105860.
Article CAS PubMed Google Scholar
Drozdinsky G, Neuberger A, Rakedzon S, Nelgas O, Cohen Y, Rudich N, et al. Treatment of Bacteremia caused by Enterobacter spp.: should the potential for AmpC induction dictate therapy? A retrospective study. Microb Drug Resist. 2021;27:410–4. https://doi.org/10.1089/mdr.2020.0234.
Article CAS PubMed Google Scholar
Ferreira TdaC, Martins IS. Risk factors of death in bloodstream infections caused by ampc β-lactamase-producing enterobacterales in patients with neoplasia. Infect Drug Resist. 2021;14:3083–97. https://doi.org/10.2147/IDR.S312920.
Herrmann L, Kimmig A, Rödel J, Hagel S, Rose N, Pletz MW, et al. Early treatment outcomes for bloodstream infections caused by potential ampc beta-lactamase-producing enterobacterales with focus on piperacillin/tazobactam: a retrospective cohort study. Antibiotics. 2021;10:665. https://doi.org/10.3390/antibiotics10060665.
Article CAS PubMed PubMed Central Google Scholar
Stewart AG, Paterson DL, Young B, Lye DC, Davis JS, Schneider K, et al. Meropenem Versus Piperacillin-Tazobactam for definitive treatment of Bloodstream infections caused by AmpC β-Lactamase-producing Enterobacter spp, Citrobacter freundii, Morganella morganii, Providencia spp, or Serratia marcescens: a pilot Multicenter Randomized Controlled Trial (MERINO-2). Open Forum Infect Dis. 2021;8:ofab387. https://doi.org/10.1093/ofid/ofab387.
Article CAS PubMed PubMed Central Google Scholar
Kunz Coyne AJ, Ghali A, El, Lucas K, Witucki P, Rebold N, Holger DJ, et al. High-dose Cefepime vs carbapenems for Bacteremia caused by Enterobacterales with Moderate to High Risk of clinically significant AmpC β-lactamase production. Open Forum Infect Dis. 2023;10:ofad034. https://doi.org/10.1093/ofid/ofad034.
Article CAS PubMed PubMed Central Google Scholar
Hoellinger B, Kaeuffer C, Boyer P, Lefebvre N, Hansmann Y, Robert A, et al. Cefepime vs carbapenems for treating third-generation cephalosporin-resistant AmpC β-lactamase-hyperproducing Enterobacterales bloodstream infections: a multicenter retrospective study. Int J Infect Dis. 2023;134:273–9. https://doi.org/10.1016/j.ijid.2023.07.004.
Article CAS PubMed Google Scholar
Lu B, Wong M, Ha D, Bounthavong M, Banaei N, Deresinski S, et al. Piperacillin/tazobactam versus cefepime or carbapenems for cefoxitin-non-susceptible Enterobacter cloacae, Klebsiella aerogenes, Citrobacter freundii, Serratia marcescens and Morganella morganii bacteraemia in immunocompromised patients. J Antimicrob Chemother. 2023;78:1009–14. https://doi.org/10.1093/jac/dkad037.
留言 (0)