Regenerative Engineering: From Convergence to Consilience

Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

Article  CAS  PubMed  Google Scholar 

Laurencin CT, et al. Tissue engineering: orthopedic applications. Annu Rev Biomed Eng. 1999;1(1):19–46.

Article  CAS  PubMed  Google Scholar 

Langer R. Tissue engineering: a new field and its challenges. Pharm Res. 1997;14(7):840.

Article  CAS  PubMed  Google Scholar 

Laurencin CT, Khan Y. Regenerative engineering. American Association for the Advancement of Science; 2012. p. 160ed9.

Google Scholar 

Laurencin CT, Nair LS. Regenerative engineering: approaches to limb regeneration and other grand challenges. Regen Eng Transl Med. 2015;1(1):1–3.

Article  PubMed  PubMed Central  Google Scholar 

Laurencin CT, Nair LS. The Quest toward limb regeneration: a regenerative engineering approach. Regen Biomater. 2016;3(2):123–5.

Article  PubMed  PubMed Central  Google Scholar 

Cooper JA, et al. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci. 2007;104(9):3049–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mengsteab PY, et al. Mechanically superior matrices promote osteointegration and regeneration of anterior cruciate ligament tissue in rabbits. Proc Natl Acad Sci. 2020;117(46):28655–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooper JA, et al. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials. 2005;26(13):1523–32.

Article  CAS  PubMed  Google Scholar 

Narayanan G, Nair LS, Laurencin CT. Regenerative engineering of the rotator cuff of the shoulder. ACS Biomater Sci Eng. 2018;4(3):751–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang X, et al. The treatment of muscle atrophy after rotator cuff tears using electroconductive nanofibrous matrices. Regen Eng Transl Med. 2021;7(1):1–9.

Article  CAS  PubMed  Google Scholar 

Peach MS, et al. Engineered stem cell niche matrices for rotator cuff tendon regenerative engineering. PLoS ONE. 2017;12(4): e0174789.

Article  PubMed  PubMed Central  Google Scholar 

Ramos DM, et al. Tendon tissue differentiation with use of fibrous scaffolds and peptide insulin for rotator cuff applications. In: Frontiers in Bioengineering and Biotechnology Conference Abstracts. 2016.

Deng M, et al. Biomimetic structures: biological implications of dipeptide-substituted polyphosphazene–polyester blend nanofiber matrices for load-bearing bone regeneration. Adv Func Mater. 2011;21(14):2641–51.

Article  CAS  Google Scholar 

Nelson C, Khan Y, Laurencin CT. Nanofiber–microsphere (nano-micro) matrices for bone regenerative engineering: a convergence approach toward matrix design. Regen Biomater. 2014;1(1):3–9.

Article  PubMed  PubMed Central  Google Scholar 

Laurencin CT, et al. Polymeric nanofibers for tissue engineering and drug delivery. Google Patents. 2007.

Laurencin CT, et al. Bi-phasic 3-dimenisonal nanofiber scaffolds, two parallel beam collector device and methods of use. Google Patents. 2019.

Laurencin CT, Ko FK. Hybrid nanofibril matrices for use as tissue engineering devices. Google Patents. 2004.

Laurencin CT, Langer R. Polymeric controlled release systems: new methods for drug delivery. Clin Lab Med. 1987;7(2):301–24.

Article  CAS  PubMed  Google Scholar 

Li WJ, et al. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–21.

Article  CAS  PubMed  Google Scholar 

Khan YM, Katti DS, Laurencin CT. Novel polymer-synthesized ceramic composite–based system for bone repair: an in vitro evaluation. J Biomed Materi Res A. 2004;69(4):728–37.

Article  Google Scholar 

Katti DS, et al. Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res B. 2004;70(2):286–96.

Article  Google Scholar 

Vernekar VN, et al. Nanotechnology applications in stem cell science for regenerative engineering. J Nanosci Nanotechnol. 2016;16(9):8953–65.

Article  CAS  Google Scholar 

Feng G, et al. Multipotential differentiation of human anulus fibrosus cells: an in vitro study. J Bone Joint Surg Am Vol. 2010;92(3):675.

Article  Google Scholar 

Otsuka T, Mengsteab PY, Laurencin CT. Control of mesenchymal cell fate via application of FGF-8b in vitro. Stem Cell Res. 2021;51: 102155.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hosseini F, Nair L, Laurencin C. Inductive materials for regenerative engineering. J Dent Res. 2021;100(10):1011–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aravamudhan A, et al. Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering. J Biomed Nanotechnol. 2013;9(4):719–31.

Article  CAS  PubMed  Google Scholar 

Shah S, et al. The synthetic artificial stem cell (SASC): shifting the paradigm of cell therapy in regenerative engineering. Proc Natl Acad Sci. 2022;119(2). https://doi.org/10.1073/pnas.2116865118.

Ramos DM, et al. Insulin immobilized PCL-cellulose acetate micro-nanostructured fibrous scaffolds for tendon tissue engineering. Polym Adv Technol. 2019;30(5):1205–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhattacharyya S, et al. Preparation of poly [bis (carboxylato phenoxy) phosphazene] non-woven nanofiber mats by electrospinning. In: Materials Research Society Symposium Proceedings. Materials Research Society; 2004.

Nair LS, Bhattacharyya S, Laurencin CT. Development of novel tissue engineering scaffolds via electrospinning. Expert Opin Biol Ther. 2004;4(5):659–68.

Article  CAS  PubMed  Google Scholar 

Bhattacharyya S, et al. Electrospinning of poly [bis (ethyl alanato) phosphazene] nanofibers. J Biomed Nanotechnol. 2006;2(1):36–45.

Article  CAS  Google Scholar 

Lu HH, et al. Three-dimensional, bioactive, biodegradable, polymer–bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Materi Res A. 2003;64(3):465–74.

Article  Google Scholar 

Laurencin C, Deng M. Natural and synthetic biomedical polymers. Newnes; 2014.

Google Scholar 

Ogueri KS, Allcock HR, Laurencin CT. Generational biodegradable and regenerative polyphosphazene polymers and their blends with poly (lactic-co-glycolic acid). Prog Polym Sci. 2019;98: 101146.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ogueri KS, Laurencin CT. Polyphosphazene-based biomaterials for regenerative engineering, in Polyphosphazenes in biomedicine, engineering, and pioneering synthesis. ACS Publications; 2018. p. 53–75.

Deng M, et al. Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications. Soft Matter. 2010;6(14):3119–32.

Article  CAS  Google Scholar 

Deng M, et al. Biomimetic, bioactive etheric polyphosphazene-poly (lactide-co-glycolide) blends for bone tissue engineering. J Biomed Materi Res A. 2010;92(1):114–25.

Article  Google Scholar 

Deng M, et al. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering. Biomaterials. 2010;31(18):4898–908.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nair LS, et al. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Biomacromol. 2004;5(6):2212–20.

Article  CAS  Google Scholar 

Bhattacharyya S, et al. Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers: scaffolds for bone tissue engineering. J Biomed Nanotechnol. 2009;5(1):69–75.

留言 (0)

沒有登入
gif