Alemu HZ, Wu W, Zhao J (2018) Feedforward neural networks with a hidden layer regularization method. Symmetry 10(10):525
Bapatla KG, Gadratagi BG, Patil NB, Govindharaj GPP, Thalluri LN, Panda BB (2024) Predictive modelling of yellow stem borer population in rice using light trap: a comparative study of MLP and LSTM networks. Ann. Appl. Biol. 185(2):255–263
Barzman M, Bàrberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P, Lamichhane JR, Messéan A, Moonen AC, Ratnadass A, Ricci P, Sarah JL, Sattin M (2015) Eight principles of integrated pest management. Agron Sustain Dev 35:1199–1215
Beck MW (2018) NeuralNetTools : visualization and analysis tools for neural networks. J Stat Softw 85:1–22
Article PubMed PubMed Central Google Scholar
Bergmeir C, Benítez JM (2012) Neural networks in R using the stuttgart neural network simulator: RSNNS. J Stat Softw 46:1–21
Bilbao I, Bilbao J (2017) Overfitting problem and the over-training in the era of data: Particularly for artificial neural networks. In: 2017 eighth international conference on intelligent computing and information systems (ICICIS), IEEE, pp 173–177
Bragança MAL, Zanuncio JC, Picanço M, Laranjeiro AJ (1998) Effects of environmental heterogeneity on Lepidoptera and Hymenoptera populations in Eucalyptus plantations in Brazil. For Ecol Manage 103:287–292
Canale MC, Nesi CN, Castilhos RV (2023) Abundance of Dalbulus maidis and impact of maize rayado fino disease on different genotypes in field conditions in Santa Catarina, Brazil. Trop Plant Pathol 48:675–684
Carmo DDG, Farias EDS, Costa TL, Queiroz EA, Nascimento M, Picanço MC (2020) Instar determination of blaptostethus pallescens (Hemiptera: Anthocoridae) using artificial neural networks. Ann Entomol Soc Am 113:50–54
Cunha TG, Veloso RV, Araújo MM, Tavares LG, Ribeiro LF, Tormen GP, Campos DS, Picanço MC, Lopes EA, Pereira RR, Soares MA (2023) Distribution of Dalbulus maidis (DeLong) (Hemiptera: Cicadellidae) and incidence of maize rayado fino virus and Candidatus Phytoplasma asteris in corn succession planting systems. Pest Manag Sci 79(7):2325–2337
Oliveira CM, Frizzas MR (2022) Eight decades of dalbulus maidis (DeLong & Wolcott) (Hemiptera, Cicadellidae) in Brazil: what we know and what we need to know. Neotrop Entomol 51:1–17
Farias ES, Santos AA, Ribeiro AV, Carmo DG, Paes JS, Picanço MC (2020) Climate and host plants mediating seasonal dynamics and within-plant distribution of the diamondback moth (Plutella xylostella). Crop Prot 134:105172
Farias ES, Farias AA, Santos RC, Santos AA, Picanço MC (2022) Forecasting the seasonal dynamics of Trichoplusia ni (Lep.: Noctuidae) on three Brassica crops through neural networks. Int J Biometeorol 66:875–882
Foresti J, Pereira RR, Santana PA, das Neves TNC, da Silva PR, Rosseto J, Novais Istchuk A, Ishizuka TK, Harter W, Schwertner MH, Picanço MC (2022) Spatial–temporal distribution of Dalbulus maidis (Hemiptera: Cicadellidae) and factors affecting its abundance in Brazil corn. Pest Manag Sci 78:2196–2203
Article CAS PubMed Google Scholar
Gonzalez JG, Jaramillo MG, Lopes JRS (2018) Undetected infection by maize bushy stunt phytoplasma enhances host-plant preference to dalbulus maidis (Hemiptera: Cicadellidae). Environ Entomol 47:396–402
Greenwell BM (2017) pdp: An R package for constructing partial dependence plots. R J 9:421–436
Ibrahim EA, Salifu D, Mwalili S, Dubois T, Collins R, Tonnang HEZ (2022) An expert system for insect pest population dynamics prediction. Comput Electron Agric 198:107124
INMET (2023) BDMEP - Banco de Dados Meteorológicos para Ensino e Pesquisa. [WWW Document]. URL http://www.inmet.gov.br/projetos/rede/pesquisa/ (accessed 1.20.23)
Kingsolver JG (1989) Weather and the population dynamics of insects: integrating physiological and population ecology. Physiol Zool 62:314–334
Krechemer FS, Foerster LA (2020) Influence of biotic and abiotic factors on the population fluctuation of Tuta absoluta (Lepidoptera: Gelechiidae) in an organic tomato farming. Int J Trop Insect Sci 40:199–208
Machado EP, Souza EV, Dias GS, Sacilotto MG, Omoto C (2024) Is insecticide resistance a factor contributing to the increasing problems with Dalbulus maidis (Hemiptera: Cicadellidae) in Brazil? Pest Manag Sci. https://doi.org/10.1002/ps.8237
Meneses AR, Querino RB, Oliveira CM, Maia AHN, Silva PRR (2016) Seasonal and vertical distribution of dalbulus maidis (Hemiptera: Cicadellidae) in Brazilian corn fields. Florida Entomol 99:750–754
Morgan D (2000) Population dynamics of the bird cherry-oat aphid, Rhopalosiphum padi (L.), during the autumn and winter: A modelling approach. Agric for Entomol 2:297–304
Moya-Raygoza G, Hogenhout SA, Nault LR (2007) Habitat of the corn leafhopper (Hemiptera: Cicadellidae) during the dry (winter) season in Mexico. Environ Entomol 36:1066–1072
Naranjo SE, Ellsworth PC (2005) Mortality dynamics and population regulation in Bemisia tabaci. Entomol Exp Appl 116:93–108
Nault LR (1980) Maize bushy stunt and corn stunt: a comparison of disease symptoms, pathogen host ranges, and vectors. Phytopathology 70:659
Noriyuki S, Kawatsu K, Kaneko S (2022) Non-linear time-series analysis of the interaction between the citrus whitefly and the whitefly-specialist ladybird. J Appl Entomol 146:903–910
Olden JD, Joy MK, Death RG (2004) An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol Modell 178:389–397
Oliveira CM, Lopes JRS, Nault LR (2013) Survival strategies of Dalbulus maidis during maize off-season in Brazil. Entomol Exp Appl 147:141–153
Paul RK, Vennila S, Singh N, Chandra P, Yadav SK, Sharma OP (2019) Seasonal dynamics of sterility mosaic of pigeonpea and its prediction using statistical models for banaskantha region of Gujarat, India. J Indian Soc Agric Stat 72(3):213–223
Prabhakar M, Vennila S, Prasad YG, Kumar GS, Paul RK, Yadav SK (2022) ARIMAX—Artificial neural network hybrid model for predicting semilooper (Chrysodeixis acuta) incidence on soybean. Int J Trop Insect Sci 42:3601–3608
Purcell AH (1988) Increased survival of Dalbulus maidis, a specialist on maize, on non-host plants infected with mollicute plant pathogens. Entomol Exp Appl 46:187–196
R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna
Rossini L, Virla EG, Albarracín EL, Van Nieuwenhove GA, Speranza S (2021) Evaluation of a physiologically based model to predict Dalbulus maidis occurrence in maize crops: validation in two different subtropical areas of South America. Entomol Exp Appl 169:597–609
Santos AA, Ribeiro AV, Farias ES, Carmo DG, Santos RC, Fidelis EG, Bacci L, Picanço MC (2021) Wet and warm conditions contribute to the occurrence of the neotropical butterfly Ascia monuste orseis Godart (Lepidoptera: Pieridae) on Brassica crops. Int J Biometeorol 65:247–256
Skawsang S, Nagai M, Tripathi NK, Soni P (2019) Predicting rice pest population occurrence with satellite-derived crop phenology, ground meteorological observation, and machine learning: A case study for the central plain of Thailand. Appl Sci 9:1–19
Souza DA, de Oliveira CM, Tamai MA, Faria M, Lopes RB (2021) First report on the natural occurrence of entomopathogenic fungi in populations of the leafhopper Dalbulus maidis (Hemiptera: Cicadellidae): pathogen identifications and their incidence in maize crops. Fungal Biol 125:980–988
Tahira HG, Saeed S, Khan FZA (2014) Entomopathogenic fungi as effective insect pest management tactic : a review entomopathogenic fungi as effective insect pest management tactic : a review. Appl Sci Bus Econ 1:10–18
Tarca AL, Carey VJ, Chen X, Romero R, Drăghici S (2007) Machine learning and its applications to biology. PLoS Comput Biol 3(6):e116
Article PubMed PubMed Central Google Scholar
Tonnang HEZ, Hervé BDB, Biber-Freudenberger L, Salifu D, Subramanian S, Ngowi VB, Guimapi RYA, Anani B, Kakmeni FMM, Affognon H, Ndjomatchoua FT, Pedro SA, Nana P, Johansson T, Nedorezov LV, Tanga CM, Nana P, Fiaboe KM, Mohamed SF, Maniania NK, Ekesi S, Borgemeister C (2017) Advances in crop insect modelling methods—towards a whole system approach. Ecol Modell 354:88–103
Tuszynski J (2019) caTools: tools: moving window statistics, GIF, Base64, ROC AUC, etc. [WWW Document]. URL https://cran.r-project.org/package=caTools (accessed 1.20.23)
Virla EG, Coll Araoz MV, Luft Albarracin E (2021) Estimation of direct damage to maize seedlings by the corn leafhopper, Dalbulus maidis (Hemiptera: Cicadellidae), under different watering regimes. Bull Entomol Res 111:438–444
留言 (0)