Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a join consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.
Article PubMed PubMed Central Google Scholar
Solnick D. Alternative splicing caused by RNA secondary structure. Cell. 1985;43:667–76.
Article CAS PubMed Google Scholar
Eperon LP, Graham IR, Griffiths AD, Eperon IC. Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell. 1988;54:393–401.
Article CAS PubMed Google Scholar
Goguel V, Wang Y, Rosbash M. Short artificial hairpins sequester splicing signals and inhibit yeast pre-mRNA splicing. Mol Cell Biol. 1993;13:6841–8.
CAS PubMed PubMed Central Google Scholar
Robinson R. Looping out introns to help splicing. PLoS Biol. 2006;4:e41.
Article PubMed PubMed Central Google Scholar
Hiller M, Zhang Z, Backofen R, Stamm S. Pre-mRNA secondary structures influence exon recognition. PLoS Genet. 2007;3:e204.
Article PubMed PubMed Central Google Scholar
Shepard PJ, Hertel KJ. Conserved RNA secondary structures promote alternative splicing. RNA. 2008;14:1463–9.
Article CAS PubMed PubMed Central Google Scholar
Jin Y, Yang Y, Zhang P. New insights into RNA secondary structure in the alternative splicing of pre-mRNAs. RNA Biol. 2010;8:450–7.
Plass M, Codony-Servat C, Ferreira PG, Vilardell J, Eyras E. RNA secondary structure mediates alternative 3’ss selection in Saccharomyces cerevisiae. RNA. 2012;18:1103–15.
Article CAS PubMed PubMed Central Google Scholar
Královičová J, Patel A, Searle M, Vořechovský I. The role of short RNA loops in recognition of a single-hairpin exon derived from a mammalian-wide interspersed repeat. RNA Biol. 2015;12:54–69.
Article PubMed PubMed Central Google Scholar
Lin CL, Taggart AJ, Fairbrother WG. RNA structure in splicing: An evolutionary perspective. RNA Biol. 2016;13:766–71.
Article PubMed PubMed Central Google Scholar
Ke S, Shang S, Kalachikov SM, Morozova I, Yu L, Russo JJ, et al. Quantitative evaluation of all hexamers as exonic splicing elements. Genome Res. 2011;21:1360–74.
Article CAS PubMed PubMed Central Google Scholar
Schirman D, Yakhini Z, Pilpel Y, Dahan O. A broad analysis of splicing regulation in yeast using a large library of synthetic introns. PLoS Genet. 2021;17:e1009805.
Article CAS PubMed PubMed Central Google Scholar
Shapiro MB, Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987;15:7155–74.
Article CAS PubMed PubMed Central Google Scholar
Lim LP, Burge CB. A computational analysis of sequence features involved in recognition of short introns. Proc Natl Acad Sci USA. 2001;98:11193–8.
Article CAS PubMed PubMed Central Google Scholar
Hollins C, Zorio DA, MacMorris M, Blumenthal T. U2AF binding selects for the high conservation of the C. elegans 3’ splice site. RNA. 2005;11:248–53.
Article CAS PubMed PubMed Central Google Scholar
Sheth N, Roca X, Hastings ML, Roeder T, Krainer AR, Sachidanandam R. Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res. 2006;34:3955–67.
Article CAS PubMed PubMed Central Google Scholar
Bakhtiar D, Vondrášková K, Pengelly R, Chivers M, Královičová J, Vořechovský I. Exonic splicing code and coordination of divalent metals in proteins. Nucleic Acids Res. 2023;52:1090–106.
Article PubMed Central Google Scholar
Smith CW, Chu TT, Nadal-Ginard B. Scanning and competition between AGs are involved in 3’ splice site selection in mammalian introns. Mol Cell Biol. 1993;13:4939–52.
CAS PubMed PubMed Central Google Scholar
Raynal C, Baux D, Theze C, Bareil C, Taulan M, Roux A-F, et al. A classification model relative to splicing for variants of unknown clinical significance: application to the CFTR gene. Hum Mutat. 2013;34:774–84.
Article CAS PubMed Google Scholar
Yan Y, Yang Y. c.2381-3T>C mutation of DMD gene: a rare SNP without significant pathogenicity. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2015;32:77–80.
Bienvenu T, Hubert D, Fonknechten N, Dusser D, Kaplan JC, Beldjord C. Unexpected inactivation of acceptor consensus splice sequence by a -3 C to T transition in intron 2 of the CFTR gene. Hum Genet. 1994;94:65–8.
Article CAS PubMed Google Scholar
Jaruzelska J, Abadie V, d’Aubenton-Carafa Y, Brody E, Munnich A, Marie J. In vitro splicing deficiency induced by a C to T mutation at position -3 in the intron 10 acceptor site of the phenylalanine hydroxylase gene in a patient with phenylketonuria. J Biol Chem. 1995;270:20370–5.
Article CAS PubMed Google Scholar
Vezain M, Gerard B, Drunat S, Funelot B, Fehranbach S, N’Guyen-Viet V, et al. A leaky splicing mutation affecting SMN1 exon 7 inclusion explains an unexpected mild case of spinal muscular atrophy. Hum Mutat. 2011;32:989–94.
Article CAS PubMed Google Scholar
Heintz C, Dobrowolski SF, Andersen NS, Demirkol M, Blau N, Andresen BS. Splicing of phenylalanine hydroxylase (PAH) exon 11 is vulnerable: molecular pathology of mutations in PAH exon 11. Mol Genet Metab. 2012;106:403–11.
Article CAS PubMed Google Scholar
Yuan J, Ma Y, Huang T, Chen Y, Peng Y, Li B, et al. Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase. Mol Cell. 2018;72:380–94.
Article CAS PubMed Google Scholar
Weisschuh N, Mazzola P, Bertrand M, Haack TB, Wissinger B, Kohl S, et al. Clinical characteristics of POC1B-associated retinopathy and assignment of pathogenicity to novel deep intronic and non-canonical splice site variants. Int J Mol Sci. 2021;22:5396.
Article CAS PubMed PubMed Central Google Scholar
Hata Y, Oku Y, Taneichi H, Tanaka T, Igarashi N, Niida Y, et al. Two autopsy cases of sudden unexpected death from Dravet syndrome with novel de novo SCN1A variants. Brain Dev. 2020;42:171–8.
Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, et al. Ensembl 2021. Nucleic Acids Res. 2021;49:D884–D91.
Article CAS PubMed Google Scholar
Iwakiri J, Kameda T, Asai K, Hamada M. Analysis of base-pairing probabilities of RNA molecules involved in protein-RNA interactions. Bioinformatics. 2013;29:2524–8.
Article CAS PubMed Google Scholar
Sato K, Hamada M, Asai K, Mituyama T. CentroidFold: a web server for RNA secondary structure prediction. Nucleic Acids Res. 2009;37:W277–W80.
留言 (0)