Verheijen J, Tahata S, Kozicz T, Witters P, Morava E. Therapeutic approaches in congenital disorders of glycosylation (CDG) involving N-linked glycosylation: an update. Genet Med. 2020;22:268–79. https://doi.org/10.1038/s41436-019-0647-2.
Ondruskova N, Cechova A, Hansikova H, Honzik T, Jaeken J. Congenital disorders of glycosylation: still “hot” in 2020. Biochim Biophys Acta Gen Subj. 2021;1865:129751. https://doi.org/10.1016/j.bbagen.2020.129751.
Losfeld ME, Ng BG, Kircher M, Buckingham KJ, Turner EH, Eroshkin A. et al. A new congenital disorder of glycosylation caused by a mutation in SSR4, the signal sequence receptor 4 protein of the TRAP complex. Hum Mol Genet. 2014;23:1602–5. https://doi.org/10.1093/hmg/ddt550.
Wang J, Gou X, Wang X, Zhang J, Zhao N, Wang X. Case Report: the novel hemizygous mutation in the SSR4 gene caused congenital disorder of glycosylation type iy: a case study and literature review. Front Genet. 2022;13:955732. https://doi.org/10.3389/fgene.2022.955732.
Article PubMed PubMed Central Google Scholar
Johnsen C, Tabatadze N, Radenkovic S, Botzo G, Kuschel B, Melikishvili G. et al. SSR4-CDG, an ultra-rare X-linked congenital disorder of glycosylation affecting the TRAP complex: review of 22 affected individuals including the first adult patient. Mol Genet Metab. 2024;142:108477. https://doi.org/10.1016/j.ymgme.2024.108477.
Ng BG, Raymond K, Kircher M, Buckingham KJ, Wood T, Shendure J. et al. Expanding the molecular and clinical phenotype of SSR4-CDG. Hum Mutat. 2015;36:1048–51. https://doi.org/10.1002/humu.22856.
Article PubMed PubMed Central Google Scholar
Castiglioni C, Feillet F, Barnerias C, Wiedemann A, Muchart J, Cortes F. et al. Expanding the phenotype of X-linked SSR4-CDG: connective tissue implications. Hum Mutat. 2021;42:142–9. https://doi.org/10.1002/humu.24151.
Medrano C, Vega A, Navarrete R, Ecay MJ, Calvo R, Pascual SI. et al. Clinical and molecular diagnosis of nonphosphomannomutase 2 N-linked congenital disorders of glycosylation in Spain. Clin Genet. 2019;95:615–26. https://doi.org/10.1111/cge.13508.
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24. https://doi.org/10.1038/gim.2015.30.
Article PubMed PubMed Central Google Scholar
Biesecker LG, Byrne AB, Harrison SM, Pesaran T, Schäffer AA, Shirts BH. ClinGen Sequence Variant Interpretation Working Group.et al. ClinGen guidance for use of the PP1/BS4 co-segregation and PP4 phenotype specificity criteria for sequence variant pathogenicity classification. Am J Hum Genet. 2024;111:24–38. https://doi.org/10.1016/j.ajhg.2023.11.009.
Sheth N, Roca X, Hastings ML, Roeder T, Krainer AR, Sachidanandam R. Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res. 2006;34:3955–67. https://doi.org/10.1093/nar/gkl556.
Article PubMed PubMed Central Google Scholar
Lin JH, Tang XY, Boulling A, Zou WB, Masson E, Fichou Y. et al. First estimate of the scale of canonical 5' splice site GT>GC variants capable of generating wild-type transcripts. Hum Mutat. 2019;40:1856–73. https://doi.org/10.1002/humu.23821.
Lv Y, Gu J, Qiu H, Li H, Zhang Z, Yin S. et al. Whole-exome sequencing identifies a donor splice-site variant in SMPX that causes rare X-linked congenital deafness. Mol Genet Genom Med. 2019;7:e967. https://doi.org/10.1002/mgg3.967.
Sakamoto O, Ohura T, Katsushima Y, Fujiwara I, Ogawa E, Miyabayashi S. et al. A novel intronic mutation of the TAZ (G4.5) gene in a patient with Barth syndrome: creation of a 5' splice donor site with variant GC consensus and elongation of the upstream exon. Hum Genet. 2001;109:559–63. https://doi.org/10.1007/s00439-001-0612-3.
留言 (0)