Parson W (2018) Age estimation with DNA: from forensic DNA fingerprinting to forensic (Epi)Genomics: a mini-review. Gerontology 64:326–332. https://doi.org/10.1159/000486239
Article CAS PubMed Google Scholar
Vidaki A, Kayser M (2018) Recent progress, methods and perspectives in forensic epigenetics. Forensic Sci Int Genet 37:180–195. https://doi.org/10.1016/j.fsigen.2018.08.008
Article CAS PubMed Google Scholar
Nie YC, Yu LJ, Guan H et al (2017) Research progress on the detection method of DNA methylation and its application in forensic science. Fa Yi Xue Za Zhi 33:293–300. https://doi.org/10.3969/j.issn.1004-5619.2017.03.017
Article CAS PubMed Google Scholar
Weidner CI, Lin Q, Koch CM et al (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15:R24. https://doi.org/10.1186/gb-2014-15-2-r24
Article CAS PubMed PubMed Central Google Scholar
Zbiec-Piekarska R, Spolnicka M, Kupiec T et al (2015) Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Sci Int Genet 14:161–167. https://doi.org/10.1016/j.fsigen.2014.10.002
Article CAS PubMed Google Scholar
Zbiec-Piekarska R, Spolnicka M, Kupiec T et al (2015) Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci Int Genet 17:173–179. https://doi.org/10.1016/j.fsigen.2015.05.001
Article CAS PubMed Google Scholar
Park JL, Kim JH, Seo E et al (2016) Identification and evaluation of age-correlated DNA methylation markers for forensic use. Forensic Sci Int Genet 23:64–70. https://doi.org/10.1016/j.fsigen.2016.03.005
Article CAS PubMed Google Scholar
Jung SE, Lim SM, Hong SR, Lee EH, Shin KJ, Lee HY (2019) DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples. Forensic Sci Int Genet 38:1–8. https://doi.org/10.1016/j.fsigen.2018.09.010
Article CAS PubMed Google Scholar
Feng L, Peng F, Li S et al (2018) Systematic feature selection improves accuracy of methylation-based forensic age estimation in Han Chinese males. Forensic Sci Int Genet 35:38–45. https://doi.org/10.1016/j.fsigen.2018.03.009
Article CAS PubMed Google Scholar
Chunxiao Li WG, Gao Y, Canqing Yu, Lv J, Lv R, Duan J, Sun Y, Guo X, Cao W, Li L (2018) Age prediction of children and adolescents aged 6–17 years: an epigenome-wide analysis of DNA methylation. Aging 10:1015–1026
Article PubMed PubMed Central Google Scholar
Horvath S, Gurven M, Levine ME et al (2016) An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol 17:171. https://doi.org/10.1186/s13059-016-1030-0
Article CAS PubMed PubMed Central Google Scholar
Aryee MJ, Jaffe AE, Corrada-Bravo H et al (2014) Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30:1363–1369. https://doi.org/10.1093/bioinformatics/btu049
Article CAS PubMed PubMed Central Google Scholar
Inkster AM, Wong MT, Matthews AM, Brown CJ, Robinson WP (2023) Who’s afraid of the X? Incorporating the X and Y chromosomes into the analysis of DNA methylation array data. Epigenetics Chromatin 16:1. https://doi.org/10.1186/s13072-022-00477-0
Article CAS PubMed PubMed Central Google Scholar
Teschendorff AE, Marabita F, Lechner M et al (2013) A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 29:189–196. https://doi.org/10.1093/bioinformatics/bts680
Article CAS PubMed Google Scholar
Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics (Oxford, England) 8:118–127. https://doi.org/10.1093/biostatistics/kxj037
Xiong Z, Li M, Yang F et al (2020) EWAS Data Hub: a resource of DNA methylation array data and metadata. Nucleic Acids Res 48:D890–D895. https://doi.org/10.1093/nar/gkz840
Article CAS PubMed Google Scholar
Xiong Z, Li M, Ma Y, Li R, Bao Y (2021) GMQN: A reference-based method for correcting batch effects as well as probes bias in HumanMethylation BeadChip. Preprint https://www.biorxiv.org/content/10.1101/2021.09.06.459116.abstract
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007
Peng F, Feng L, Chen J et al (2019) Validation of methylation-based forensic age estimation in time-series bloodstains on FTA cards and gauze at room temperature conditions. Forensic Sci Int Genet 40:168–174. https://doi.org/10.1016/j.fsigen.2019.03.006
Article CAS PubMed Google Scholar
Woźniak A, Heidegger A, Piniewska-Róg D et al (2021) Development of the VISAGE enhanced tool and statistical models for epigenetic age estimation in blood, buccal cells and bones. Aging 13:6459–84. https://doi.org/10.18632/aging.202783
Article PubMed PubMed Central Google Scholar
Zaghlool SB, Al-Shafai M, Al Muftah WA, Kumar P, Falchi M, Suhre K (2015) Association of DNA methylation with age, gender, and smoking in an Arab population. Clin Epigenetics 7:6. https://doi.org/10.1186/s13148-014-0040-6
Article CAS PubMed PubMed Central Google Scholar
Bell JT, Tsai PC, Yang TP et al (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet 8:e1002629. https://doi.org/10.1371/journal.pgen.1002629
Article CAS PubMed PubMed Central Google Scholar
Hannum G, Guinney J, Zhao L et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367. https://doi.org/10.1016/j.molcel.2012.10.016
Article CAS PubMed Google Scholar
Florath I, Butterbach K, Müller H, Bewerunge-Hudler M, Brenner H (2014) Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet 23:1186–1201. https://doi.org/10.1093/hmg/ddt531
Article CAS PubMed Google Scholar
McCartney DL, Zhang F, Hillary RF et al (2019) An epigenome-wide association study of sex-specific chronological ageing. Genome Med 12:1. https://doi.org/10.1186/s13073-019-0693-z
Article CAS PubMed PubMed Central Google Scholar
Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115
Article PubMed PubMed Central Google Scholar
Chitrala KN, Hernandez DG (2020) Race-specific alterations in DNA methylation among middle-aged African Americans and Whites with metabolic syndrome. Epigenetics 15:462–482. https://doi.org/10.1080/15592294.2019.1695340
McCartney DL, Zhang F, Hillary RF et al (2019) An epigenome-wide association study of sex-specific chronological ageing. Genome Med 12:1. https://doi.org/10.1186/s13073-019-0693-z
Article CAS PubMed PubMed Central Google Scholar
Alsaleh H, Haddrill PR (2019) Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. Forensic Sci Int 303:109944. https://doi.org/10.1016/j.forsciint.2019.109944
留言 (0)