A methylation panel of 10 CpGs for accurate age inference via stepwise conditional epigenome-wide association study

Parson W (2018) Age estimation with DNA: from forensic DNA fingerprinting to forensic (Epi)Genomics: a mini-review. Gerontology 64:326–332. https://doi.org/10.1159/000486239

Article  CAS  PubMed  Google Scholar 

Vidaki A, Kayser M (2018) Recent progress, methods and perspectives in forensic epigenetics. Forensic Sci Int Genet 37:180–195. https://doi.org/10.1016/j.fsigen.2018.08.008

Article  CAS  PubMed  Google Scholar 

Nie YC, Yu LJ, Guan H et al (2017) Research progress on the detection method of DNA methylation and its application in forensic science. Fa Yi Xue Za Zhi 33:293–300. https://doi.org/10.3969/j.issn.1004-5619.2017.03.017

Article  CAS  PubMed  Google Scholar 

Weidner CI, Lin Q, Koch CM et al (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15:R24. https://doi.org/10.1186/gb-2014-15-2-r24

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zbiec-Piekarska R, Spolnicka M, Kupiec T et al (2015) Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Sci Int Genet 14:161–167. https://doi.org/10.1016/j.fsigen.2014.10.002

Article  CAS  PubMed  Google Scholar 

Zbiec-Piekarska R, Spolnicka M, Kupiec T et al (2015) Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci Int Genet 17:173–179. https://doi.org/10.1016/j.fsigen.2015.05.001

Article  CAS  PubMed  Google Scholar 

Park JL, Kim JH, Seo E et al (2016) Identification and evaluation of age-correlated DNA methylation markers for forensic use. Forensic Sci Int Genet 23:64–70. https://doi.org/10.1016/j.fsigen.2016.03.005

Article  CAS  PubMed  Google Scholar 

Jung SE, Lim SM, Hong SR, Lee EH, Shin KJ, Lee HY (2019) DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples. Forensic Sci Int Genet 38:1–8. https://doi.org/10.1016/j.fsigen.2018.09.010

Article  CAS  PubMed  Google Scholar 

Feng L, Peng F, Li S et al (2018) Systematic feature selection improves accuracy of methylation-based forensic age estimation in Han Chinese males. Forensic Sci Int Genet 35:38–45. https://doi.org/10.1016/j.fsigen.2018.03.009

Article  CAS  PubMed  Google Scholar 

Chunxiao Li WG, Gao Y, Canqing Yu, Lv J, Lv R, Duan J, Sun Y, Guo X, Cao W, Li L (2018) Age prediction of children and adolescents aged 6–17 years: an epigenome-wide analysis of DNA methylation. Aging 10:1015–1026

Article  PubMed  PubMed Central  Google Scholar 

Horvath S, Gurven M, Levine ME et al (2016) An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol 17:171. https://doi.org/10.1186/s13059-016-1030-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aryee MJ, Jaffe AE, Corrada-Bravo H et al (2014) Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30:1363–1369. https://doi.org/10.1093/bioinformatics/btu049

Article  CAS  PubMed  PubMed Central  Google Scholar 

Inkster AM, Wong MT, Matthews AM, Brown CJ, Robinson WP (2023) Who’s afraid of the X? Incorporating the X and Y chromosomes into the analysis of DNA methylation array data. Epigenetics Chromatin 16:1. https://doi.org/10.1186/s13072-022-00477-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teschendorff AE, Marabita F, Lechner M et al (2013) A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 29:189–196. https://doi.org/10.1093/bioinformatics/bts680

Article  CAS  PubMed  Google Scholar 

Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics (Oxford, England) 8:118–127. https://doi.org/10.1093/biostatistics/kxj037

Article  PubMed  Google Scholar 

Xiong Z, Li M, Yang F et al (2020) EWAS Data Hub: a resource of DNA methylation array data and metadata. Nucleic Acids Res 48:D890–D895. https://doi.org/10.1093/nar/gkz840

Article  CAS  PubMed  Google Scholar 

Xiong Z, Li M, Ma Y, Li R, Bao Y (2021) GMQN: A reference-based method for correcting batch effects as well as probes bias in HumanMethylation BeadChip. Preprint https://www.biorxiv.org/content/10.1101/2021.09.06.459116.abstract

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007

Peng F, Feng L, Chen J et al (2019) Validation of methylation-based forensic age estimation in time-series bloodstains on FTA cards and gauze at room temperature conditions. Forensic Sci Int Genet 40:168–174. https://doi.org/10.1016/j.fsigen.2019.03.006

Article  CAS  PubMed  Google Scholar 

Woźniak A, Heidegger A, Piniewska-Róg D et al (2021) Development of the VISAGE enhanced tool and statistical models for epigenetic age estimation in blood, buccal cells and bones. Aging 13:6459–84. https://doi.org/10.18632/aging.202783

Article  PubMed  PubMed Central  Google Scholar 

Zaghlool SB, Al-Shafai M, Al Muftah WA, Kumar P, Falchi M, Suhre K (2015) Association of DNA methylation with age, gender, and smoking in an Arab population. Clin Epigenetics 7:6. https://doi.org/10.1186/s13148-014-0040-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bell JT, Tsai PC, Yang TP et al (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet 8:e1002629. https://doi.org/10.1371/journal.pgen.1002629

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hannum G, Guinney J, Zhao L et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367. https://doi.org/10.1016/j.molcel.2012.10.016

Article  CAS  PubMed  Google Scholar 

Florath I, Butterbach K, Müller H, Bewerunge-Hudler M, Brenner H (2014) Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet 23:1186–1201. https://doi.org/10.1093/hmg/ddt531

Article  CAS  PubMed  Google Scholar 

McCartney DL, Zhang F, Hillary RF et al (2019) An epigenome-wide association study of sex-specific chronological ageing. Genome Med 12:1. https://doi.org/10.1186/s13073-019-0693-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115

Article  PubMed  PubMed Central  Google Scholar 

Chitrala KN, Hernandez DG (2020) Race-specific alterations in DNA methylation among middle-aged African Americans and Whites with metabolic syndrome. Epigenetics 15:462–482. https://doi.org/10.1080/15592294.2019.1695340

Article  PubMed  Google Scholar 

McCartney DL, Zhang F, Hillary RF et al (2019) An epigenome-wide association study of sex-specific chronological ageing. Genome Med 12:1. https://doi.org/10.1186/s13073-019-0693-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alsaleh H, Haddrill PR (2019) Identifying blood-specific age-related DNA methylation markers on the Illumina MethylationEPIC® BeadChip. Forensic Sci Int 303:109944. https://doi.org/10.1016/j.forsciint.2019.109944

留言 (0)

沒有登入
gif