Transcriptomic analysis delineates potential regulatory network as therapeutic alternatives in chronic myeloid leukemia

Jabbour E, Kantarjian H (2022) Chronic myeloid leukemia: 2022 update on diagnosis, therapy, and monitoring. Am J Hematol 97(9):1236–1256

Article  CAS  PubMed  Google Scholar 

Cortes J, Pavlovsky C, Saußele S (2021) Chronic myeloid leukaemia. Lancet 398(10314):1914–1926

Article  CAS  PubMed  Google Scholar 

Leibowitz D, Young KS, Band PR, Deschamps M, Israël L (1989) The molecular biology of CML: a review. Cancer Invest 7(2):195–203

Article  CAS  PubMed  Google Scholar 

Druker BJ (2008) Translation of the Philadelphia chromosome into therapy for CML. Blood 112(13):4808–4817

Article  CAS  PubMed  Google Scholar 

Holyoake TL, Vetrie D (2017) The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood 129(12):1595–1606

Article  CAS  PubMed  Google Scholar 

Kumar V, Garg M, Chaudhary N, Chandra AB (2018) An observational study on risk of secondary cancers in chronic myeloid leukemia patients in the TKI era in the United States. PeerJ 12(6):e4342

Article  Google Scholar 

Cortes J, Lang F (2021) Third-line therapy for chronic myeloid leukemia: current status and future directions. J Hematol OncolJ Hematol Oncol 14(1):44

Article  CAS  Google Scholar 

Jain P, Kantarjian H, Patel KP, Gonzalez GN, Luthra R, Shamanna RK et al (2016) Impact of BCR-ABL transcript type on outcome in patients with chronic-phase CML treated with tyrosine kinase inhibitors. Blood 127(10):1269–1275

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hochhaus A, Breccia M, Saglio G, García-Gutiérrez V, Réa D, Janssen J et al (2020) Expert opinion—management of chronic myeloid leukemia after resistance to second-generation tyrosine kinase inhibitors. Leukemia 34(6):1495–1502

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lei H, Xu HZ, Shan HZ, Liu M, Lu Y, Fang ZX et al (2021) Targeting USP47 overcomes tyrosine kinase inhibitor resistance and eradicates leukemia stem/progenitor cells in chronic myelogenous leukemia. Nat Commun 12(1):51

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu Y, Swerdlow S, Duffy TM, Weinmann R, Lee FY, Li S (2006) Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph + leukemia in mice. Proc Natl Acad Sci 103(45):16870–16875

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nicholson E, Holyoake T (2009) The chronic myeloid leukemia stem cell. Clin Lymphoma Myeloma 9:S376–S381

Article  CAS  PubMed  Google Scholar 

Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ (2011) Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 121(1):396–409

Article  CAS  PubMed  Google Scholar 

Konig H, Holtz M, Modi H, Manley P, Holyoake TL, Forman SJ et al (2008) Enhanced BCR-ABL kinase inhibition does not result in increased inhibition of downstream signaling pathways or increased growth suppression in CML progenitors. Leukemia 22(4):748–755

Article  CAS  PubMed  Google Scholar 

Jørgensen HG, Allan EK, Jordanides NE, Mountford JC, Holyoake TL (2007) Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood 109(9):4016–4019

Article  PubMed  Google Scholar 

Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N et al (2006) Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 107(11):4532–4539

Article  CAS  PubMed  Google Scholar 

Holtz MS, Slovak ML, Zhang F, Sawyers CL, Forman SJ, Bhatia R (2002) Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood 99(10):3792–3800

Article  CAS  PubMed  Google Scholar 

Zhao H, Deininger MW (2020) Declaration of Bcr-Abl1 independence. Leukemia 34(11):2827–2836

Article  PubMed  Google Scholar 

Hughes TP, Shanmuganathan N (2022) Management of TKI-resistant chronic phase CML. Hematology 2022(1):129–137

Article  PubMed  PubMed Central  Google Scholar 

Sacha T (2013) Imatinib in chronic myeloid leukemia: an overview. Mediterr J Hematol Infect Dis 6(1):e2014007

Article  Google Scholar 

Zhou H, Xu R (2015) Leukemia stem cells: the root of chronic myeloid leukemia. Protein Cell 6(6):403–412

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olsson B, Legros L, Guilhot F, Strömberg K, Smith J, Livesey FJ et al (2014) Imatinib treatment and Aβ42 in humans. Alzheimers Dement. https://doi.org/10.1016/j.jalz.2013.08.283

Article  PubMed  Google Scholar 

Wodarz D (2008) Stem cell regulation and the development of blast crisis in chronic myeloid leukemia: Implications for the outcome of Imatinib treatment and discontinuation. Med Hypotheses 70(1):128–136

Article  CAS  PubMed  Google Scholar 

Alves R, Gonçalves AC, Jorge J, Marques G, Luís D, Ribeiro AB et al (2019) MicroRNA signature refine response prediction in CML. Sci Rep 9(1):9666

Article  PubMed  PubMed Central  Google Scholar 

Navabi A, Akbari B, Abdalsamadi M, Naseri S (2022) The role of microRNAs in the development, progression and drug resistance of chronic myeloid leukemia and their potential clinical significance. Life Sci 296:120437

Article  CAS  PubMed  Google Scholar 

Mahmoud MM, Sanad EF, Elshimy RAA, Hamdy NM (2021) Competitive endogenous role of the LINC00511/miR-185-3p axis and miR-301a-3p from liquid biopsy as molecular markers for breast cancer diagnosis. Front Oncol 20(11):749753

Article  Google Scholar 

Wang LS, Li L, Li L, Chu S, Shiang KD, Li M et al (2015) MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors. Blood 125(8):1302–1313

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morris VA, Zhang A, Yang T, Stirewalt DL, Ramamurthy R, Meshinchi S et al (2013) MicroRNA-150 expression induces myeloid differentiation of human acute leukemia cells and normal hematopoietic progenitors. PLoS ONE 8(9):e75815

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu X, Lin Z, Du J, Zhou X, Yang L, Liu G (2014) Studies on microRNAs that are correlated with the cancer stem cells in chronic myeloid leukemia. Mol Cell Biochem 390(1–2):75–84

Article  CAS  PubMed  Google Scholar 

Yu Y, Cao L, Yang L, Kang R, Lotze M, Tang D (2012) microRNA 30A promotes autophagy in response to cancer therapy. Autophagy 8(5):853–855

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Aziz MKA, Dawoud A, Kiriacos CJ, Fahmy SA, Hamdy NM, Youness RA (2023) Decoding hepatocarcinogenesis from a noncoding RNAs perspective. J Cell Physiol 238(9):1982–2009

Article  CAS  PubMed 

留言 (0)

沒有登入
gif