MTSS1: beyond the integration of actin and membrane dynamics

Lee YG et al (2002) MIM, a potential metastasis suppressor gene in bladder cancer. Neoplasia 4(4):291–294

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie F et al (2011) MTSS1: a multifunctional protein and its role in cancer invasion and metastasis. Front Biosci (Schol Ed) 3(2):621–631

Article  PubMed  Google Scholar 

Parr C, Jiang WG (2009) Metastasis suppressor 1 (MTSS1) demonstrates prognostic value and anti-metastatic properties in breast cancer. Eur J Cancer 45(9):1673–1683

Article  CAS  PubMed  Google Scholar 

Zhang S, Qi Q (2015) MTSS1 suppresses cell migration and invasion by targeting CTTN in glioblastoma. J Neurooncol 121(3):425–431

Article  CAS  PubMed  Google Scholar 

Xu M, Xu T (2018) Expression and clinical significance of miR-23a and MTSS1 in diffuse large B-cell lymphoma. Oncol Lett 16(1):371–377

PubMed  PubMed Central  Google Scholar 

Zheng S et al (2023) MTSS1 is downregulated in nasopharyngeal carcinoma (NPC) which disrupts adherens junctions leading to enhanced cell migration and invasion. Front Cell Dev Biol 11:1275668

Article  PubMed  PubMed Central  Google Scholar 

Callahan CA et al (2004) MIM/BEG4, a sonic hedgehog-responsive gene that potentiates gli-dependent transcription. Genes Dev 18(22):2724–2729

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen M et al (2023) Metastasis suppressor 1 interacts with protein tyrosine phosphatase receptor-δ to regulate adipogenesis. Faseb j 37(4):e22857

Article  CAS  PubMed  Google Scholar 

Chen M et al (2022) Metastasis suppressor 1 controls osteoblast differentiation and bone homeostasis through regulating Src-Wnt/β-catenin signaling. Cell Mol Life Sci 79(2):107

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarapulov AV et al (2020) Missing-in-Metastasis/Metastasis suppressor 1 regulates B cell receptor signaling, B cell metabolic potential, and T cell-independent Immune responses. Front Immunol 11:599

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mattila PK et al (2007) Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism. J Cell Biol 176(7):953–964

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suetsugu S et al (2006) The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation. J Biol Chem 281(46):35347–35358

Article  CAS  PubMed  Google Scholar 

Salzer U, Kostan J, Djinović-Carugo K (2017) Deciphering the BAR code of membrane modulators. Cell Mol Life Sci 74(13):2413–2438

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saarikangas J et al (2009) Molecular mechanisms of membrane deformation by I-BAR domain proteins. Curr Biol 19(2):95–107

Article  CAS  PubMed  Google Scholar 

Lee SH et al (2007) Structural basis for the actin-binding function of missing-in-metastasis. Structure 15(2):145–155

Article  PubMed  PubMed Central  Google Scholar 

Millard TH et al (2005) Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J 24(2):240–250

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mattila PK et al (2003) Mouse MIM, a tissue-specific regulator of cytoskeletal dynamics, interacts with ATP-actin monomers through its C-terminal WH2 domain. J Biol Chem 278(10):8452–8459

Article  CAS  PubMed  Google Scholar 

Woodings JA, Sharp SJ, Machesky LM (2003) MIM-B, a putative metastasis suppressor protein, binds to actin and to protein tyrosine phosphatase delta. Biochem J 371(Pt 2):463–471

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saarikangas J et al (2008) ABBA regulates plasma-membrane and actin dynamics to promote radial glia extension. J Cell Sci 121(Pt 9):1444–1454

Article  CAS  PubMed  Google Scholar 

Gonzalez-Quevedo R et al (2005) Receptor tyrosine phosphatase-dependent cytoskeletal remodeling by the hedgehog-responsive gene MIM/BEG4. J Cell Biol 168(3):453–463

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamagishi A et al (2004) A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J Biol Chem 279(15):14929–14936

Article  CAS  PubMed  Google Scholar 

Bompard G et al (2005) Involvement of Rac in actin cytoskeleton rearrangements induced by MIM-B. J Cell Sci 118(Pt 22):5393–5403

Article  CAS  PubMed  Google Scholar 

Zheng D et al (2010) Abba promotes PDGF-mediated membrane ruffling through activation of the small GTPase Rac1. Biochem Biophys Res Commun 401(4):527–532

Article  CAS  PubMed  PubMed Central  Google Scholar 

Connolly BA et al (2005) Tiam1-IRSp53 complex formation directs specificity of rac-mediated actin cytoskeleton regulation. Mol Cell Biol 25(11):4602–4614

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin J et al (2005) Differential regulation of cortactin and N-WASP-mediated actin polymerization by missing in metastasis (MIM) protein. Oncogene 24(12):2059–2066

Article  CAS  PubMed  Google Scholar 

Liang L et al (2021) Metastasis suppressor 1 interacts with α-actinin 4 to affect its localization and regulate formation of membrane ruffling. Cytoskeleton (Hoboken) 78(7):337–348

Article  CAS  PubMed  Google Scholar 

Senju Y et al (2023) Actin-rich lamellipodia-like protrusions contribute to the integrity of epithelial cell-cell junctions. J Biol Chem 299(5):104571

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jung M, Kim D, Mun JY (2020) Direct visualization of actin filaments and actin-binding proteins in neuronal cells. Front Cell Dev Biol 8:588556

Article  PubMed  PubMed Central  Google Scholar 

Parker SS et al (2023) EVL and MIM/MTSS1 regulate actin cytoskeletal remodeling to promote dendritic filopodia in neurons. J Cell Biol, 222(5)

Saarikangas J et al (2015) MIM-Induced membrane bending promotes dendritic spine initiation. Dev Cell 33(6):644–659

Article  CAS  PubMed  Google Scholar 

Kawabata Galbraith K et al (2018) MTSS1 regulation of actin-nucleating Formin DAAM1 in dendritic Filopodia determines final dendritic configuration of Purkinje cells. Cell Rep 24(1):95–106e9

Article  CAS  PubMed  Google Scholar 

Nishimura T et al (2021) Filopodium-derived vesicles produced by MIM enhance the migration of recipient cells. Dev Cell 56(6):842–859e8

留言 (0)

沒有登入
gif