Reed MD, Goldfarb J, Yamashita TS, Lemon E, Blumer JL. Single dose pharmacokinetics of piperacillin and tazobactam in infants and children. Antimicrob Agents Chemother. 1994;38(12):2817–26. https://doi.org/10.1128/aac.38.12.2817.
Article CAS PubMed PubMed Central Google Scholar
Holmes B, Richards DM, Brogden RN, Heel RC. Piperacillin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 1984;28(5):375–425. https://doi.org/10.2165/00003495-198428050-00002.
Article CAS PubMed Google Scholar
Turnidge JD. The pharmacodynamics of beta-lactams. Clin Infect Dis. 1998;27(1):10–22. https://doi.org/10.1086/514622.
Article CAS PubMed Google Scholar
Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26(1):1–10. https://doi.org/10.1086/516284.
Article CAS PubMed Google Scholar
Lodise TP, Lomaestro BM, Drusano GL. Application of antimicrobial pharmacodynamic concepts into clinical practice: focus on beta-lactam antibiotics: insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2006;26(9):1320–32. https://doi.org/10.1592/phco.26.9.1320.
Article CAS PubMed Google Scholar
Frei CR, Wiederhold NP, Burgess DS. Antimicrobial breakpoints for gram- negative aerobic bacteria based on pharmacokinetic-pharmacodynamic models with Monte Carlo simulation. J Antimicrob Chemother. 2008;61(3):621–8. https://doi.org/10.1093/jac/dkm536.
Article CAS PubMed Google Scholar
Fratoni AJ, Nicolau DP, Kuti JL. A guide to therapeutic drug monitoring of β-lactam antibiotics. Pharmacotherapy. 2021;41:220–33. https://doi.org/10.1002/phar.2505.
Article CAS PubMed Google Scholar
Pfizer. Piperacillin sodium and tazobactam sodium (Zosyn) product information. 2017. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/ label/2017/050684s88s89s90_050750s37s38s39lbl.pdf. Accessed May 2017.
Hayashi Y, Roberts JA, Paterson DL, Lipman J. Pharmacokinetic evaluation of piperacillin-tazobactam. Expert Opin Drug Metab Toxicol. 2010;6(8):1017–31. https://doi.org/10.1517/17425255.2010.506187.
Article CAS PubMed Google Scholar
Moellering RC. The continuing challenge of lower respiratory tract infections. Clin Infect Dis. 2002;34:S1-3. https://doi.org/10.1086/324524.
Leowski J. Mortality from acute respiratory infections in children under 5 years of age: global estimates. World Health Stat Q. 1986;39(2):138–44.
Jiang ZF, Wang JF, Zhaori G, Gu Q, Wang XL, Liu SY. Pneumonia-one of the major health problems of infants and children in China. Chin Med J (Engl). 1992;105(1):81–6.
US Food and Drug Administration. Zosyn® (piperacillin and tazobactam injection) in Galaxy® containers (PL 2040 Plastic). 2020. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/050684s096,050750s043lbl.pdf. Accessed May 2020.
Marsot A. (2020) Review of population pharmacokinetic models of first choice beta-lactam antibiotics in severely afflicted pediatric patients: discrepancy in dosage regimens. J Pharm Pharm Sci. 2020;23:470–85. https://doi.org/10.18433/jpps30927.
Article CAS PubMed Google Scholar
Beranger A, Benaboud S, Urien S, Moulin F, Bille E, Lesage F, et al. Piperacillin population harmacokinetics and dosing regimen optimization in critically ill children with normal and augmented renal clearance. Clin Pharmacokinet. 2019;58(2):223–33. https://doi.org/10.1007/s40262-018-0682-1.
Article CAS PubMed Google Scholar
Cies JJ, Shankar V, Schlichting C, Kuti JL. Population pharmacokinetics of piperacillin/tazobactam in critically ill young children. Pediatr Infect Dis J. 2014;33(2):168–73. https://doi.org/10.1097/inf.0b013e3182a743c7.
Cohen-Wolkowiez M, Benjamin DK Jr, Ross A, James LP, Sullivan JE, Walsh MC, et al. Population pharmacokinetics of piperacillin using scavenged samples from preterm infants. Ther Drug Monit. 2012;34(3):312–9. https://doi.org/10.1097/ftd.0b013e3182587665.
Article CAS PubMed PubMed Central Google Scholar
Cohen-Wolkowiez M, Watt KM, Zhou C, Bloom BT, Poindexter B, Castro L, et al. Developmental pharmacokinetics of piperacillin and tazobactam using plasma and dried blood spots from infants. Antimicrob Agents Chemother. 2014;58(5):2856–65. https://doi.org/10.1128/aac.02139-13.
Article PubMed PubMed Central Google Scholar
De Cock PAJG, van Dijkman SC, de Jaeger A, Willems J, Carlier M, Verstraete AG, et al. Dose optimization of piperacillin/ tazobactam in critically ill children. J Antimicrob Chemother. 2017;72(7):2002–11. https://doi.org/10.1093/jac/dkx093.
Article CAS PubMed Google Scholar
Li Z, Chen Y, Li Q, Cao D, Shi W, Cao Y, et al. Population pharmacokinetics of piperacillin/tazobactam in neonates and young infants. Eur J Clin Pharmacol. 2013;69(6):1223–33. https://doi.org/10.1007/s00228-012-1413-4.
Article CAS PubMed Google Scholar
Nichols K, Chung EK, Knoderer CA, Buenger LE, Healy DP, Dees J, et al. Population pharmacokinetics and pharmacodynamics of extended-infusion piperacillin and tazobactam in critically ill children. Antimicrob Agents Chemother. 2015;60(1):522–31. https://doi.org/10.1128/aac.02089-15.
Article PubMed PubMed Central Google Scholar
Thibault C, Lavigne J, Litalien C, Kassir N, Theoret Y, Autmizguine J. Population pharmacokinetics and safety of piperacillin-tazobactam extended infusions in infants and children. Antimicrob Agents Chemother. 2019;63(11):e01260-e1319. https://doi.org/10.1128/aac.01260-19.
Article CAS PubMed PubMed Central Google Scholar
Cies JJ, Jain J, Kuti JL. Population pharmacokinetics of the piperacillin component of piperacillin/tazobactam in pediatric oncology patients with fever and neutropenia. Pediatr Blood Cancer. 2015;62(3):477–82. https://doi.org/10.1002/pbc.25287.
Article CAS PubMed Google Scholar
Leroux S, Turner MA, Guellec CB, et al. Pharmacokinetic studies in neonates: the utility of an opportunistic sampling design. Clin Pharmacokinet. 2015;54(12):1273–85. https://doi.org/10.1007/s40262-015-0291-1.
Article CAS PubMed Google Scholar
Meibohm B, Laer S, Panetta JC, Barrett JS. Population pharmacokinetic studies in pediatrics: issues in design and analysis. AAPS J. 2005;7(2):E475–87. https://doi.org/10.1208/aapsj070248.
Article PubMed PubMed Central Google Scholar
Holford N, Heo YA, Anderson B. A pharmacokinetic standard for babies and aduts. J Pharm Sci. 2013;102(9):2941–52. https://doi.org/10.1002/jps.23574.
Article CAS PubMed Google Scholar
Bergstrand M, Hooker AC, Wallin JE, et al. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13(2):143–51. https://doi.org/10.1208/s12248-011-9255-z.
Article PubMed PubMed Central Google Scholar
Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 33rd ed. CLSI supplement M100. 2023.
The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 13.0, 2023. Available from: http://www.eucast.org. Accessed 26 Oct 2024.
Drusano GL. Prevention of resistance: a goal for dose selection for antimicrobial agents. Clin Infect Dis. 2003;36(Suppl. 1):S42-50. https://doi.org/10.1086/344653.
Article CAS PubMed Google Scholar
Falagas ME, Tansarli GS, Ikawa K, Vardakas KZ. Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis. Clin Infect Dis. 2013;56(2):272–82. https://doi.org/10.1093/cid/cis857.
Article CAS PubMed Google Scholar
Roberts JA, Abdul-Aziz MH, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, et al. Continuous versus intermittent beta-lactam infusion in severe sepsis:
留言 (0)