Prinz M, Lessig R (2014) Forensic DNA Analysis. Handbook of Forensic Medicine. pp. 1141-83
Butler JM (2005) Forensic DNA typing: Biology, Technology, and Genetics of STR markers, 2nd edn. ed. Elsevier Science & Technology San Diego
Alaeddini R, Walsh SJ, Abbas A (2010) Forensic implications of genetic analyses from degraded DNA–a review. Forensic Sci Int Genet 4:148–157. https://doi.org/10.1016/j.fsigen.2009.09.007
Article CAS PubMed Google Scholar
Tozzo P, Scrivano S, Sanavio M, Caenazzo L (2020) The role of DNA degradation in the estimation of Post-mortem interval: a systematic review of the current literature. Int J Mol Sci 21. https://doi.org/10.3390/ijms21103540
Galloway A, Birkby WH, Jones AM, Henry TE, Parks BO (1989) Decay rates of human remains in an arid environment. J Forensic Sci 34:607–616
Article CAS PubMed Google Scholar
Madea B, Henßge C, Reibe S, Tsokos M (2022) Postmortem Changes and Time since Death. Handbook of Forensic Medicine. pp. 91–149
Bar W, Kratzer A, Machler M, Schmid W (1988) Postmortem stability of DNA. Forensic Sci Int 39:59–70. https://doi.org/10.1016/0379-0738(88)90118-1
Article CAS PubMed Google Scholar
Johnson LA, Ferris JA (2002) Analysis of postmortem DNA degradation by single-cell gel electrophoresis. Forensic Sci Int 126:43–47. https://doi.org/10.1016/s0379-0738(02)00027-0
Article CAS PubMed Google Scholar
Orlando L, Allaby R, Skoglund P et al (2021) Ancient DNA analysis. Nat Reviews Methods Primers 1:14. https://doi.org/10.1038/s43586-020-00011-0
Zarczynska M, Zarczynski P, Tomsia M (2023) Nucleic acids persistence-benefits and limitations in Forensic Genetics. Genes (Basel) 14. https://doi.org/10.3390/genes14081643
Sorensen A, Rahman E, Canela C, Gangitano D, Hughes-Stamm S (2016) Preservation and rapid purification of DNA from decomposing human tissue samples. Forensic Sci Int Genet 25:182–190. https://doi.org/10.1016/j.fsigen.2016.05.013
Article CAS PubMed Google Scholar
Mundorff AZ, Amory S, Huel R, Bilic A, Scott AL, Parsons TJ (2018) An economical and efficient method for postmortem DNA sampling in mass fatalities. Forensic Sci Int Genet 36:167–175. https://doi.org/10.1016/j.fsigen.2018.07.009
Article CAS PubMed Google Scholar
Holmes AS, Roman MG, Hughes-Stamm S (2018) In-field collection and preservation of decomposing human tissues to facilitate rapid purification and STR typing. Forensic Sci Int Genet 36:124–129. https://doi.org/10.1016/j.fsigen.2018.06.015
Article CAS PubMed Google Scholar
Elwick K, Mayes C, Hughes-Stamm S (2018) Comparative sensitivity and inhibitor tolerance of GlobalFiler(R) PCR amplification and investigator(R) 24plex QS kits for challenging samples. Leg Med (Tokyo) 32:31–36. https://doi.org/10.1016/j.legalmed.2018.01.006
Article CAS PubMed Google Scholar
Senst A, Scheurer E, Gerlach K, Schulz I (2021) Which tissue to take? A retrospective study of the identification success of altered human remains. J Forensic Leg Med 84:102271. https://doi.org/10.1016/j.jflm.2021.102271
Jung JK, Lim SB, Park HY et al (2020) A study on the selection of the effective autopsy tissue for DNA identification of decomposed cadavers. Korean J Forensic Sci 21:9–14
Schwark T, Heinrich A, von Wurmb-Schwark N (2011) Genetic identification of highly putrefied bodies using DNA from soft tissues. Int J Legal Med 125:891–894. https://doi.org/10.1007/s00414-010-0537-2
Courts C, Sauer E, Hofmann Y, Madea B, Schyma C (2015) Assessment of STR typing success rate in soft tissues from Putrefied bodies based on a quantitative Grading System for Putrefaction. J Forensic Sci 60:1016–1021. https://doi.org/10.1111/1556-4029.12746
Article CAS PubMed Google Scholar
Uerlings S, Welter V, Madea B, Grabmüller M (2021) Comparative analysis of DNA extraction processes for DNA-based identification from putrefied bodies in forensic routine work. Forensic Sci Int 320:110707. https://doi.org/10.1016/j.forsciint.2021.110707
Article CAS PubMed Google Scholar
Helm K, Matzenauer C, Neuhuber F et al (2021) Suitability of specific soft tissue swabs for the forensic identification of highly decomposed bodies. Int J Legal Med 135:1319–1327. https://doi.org/10.1007/s00414-021-02601-3
Article PubMed PubMed Central Google Scholar
van den Berge M, Wiskerke D, Gerretsen RR, Tabak J, Sijen T (2016) DNA and RNA profiling of excavated human remains with varying postmortem intervals. Int J Legal Med 130:1471–1480. https://doi.org/10.1007/s00414-016-1438-9
Grubwieser P, Muhlmann R, Berger B, Niederstatter H, Pavlic M, Parson W (2006) A new miniSTR-multiplex displaying reduced amplicon lengths for the analysis of degraded DNA. Int J Legal Med 120:115–120. https://doi.org/10.1007/s00414-005-0013-6
Article CAS PubMed Google Scholar
Fondevila M, Phillips C, Naveran N et al (2008) Case report: identification of skeletal remains using short-amplicon marker analysis of severely degraded DNA extracted from a decomposed and charred femur. Forensic Sci Int Genet 2:212–218. https://doi.org/10.1016/j.fsigen.2008.02.005
Article CAS PubMed Google Scholar
Poetsch M, Kamphausen T, Bajanowski T, Schwark T, von Wurmb-Schwark N (2011) Powerplex(R) ES versus powerplex(R) S5–casework testing of the new screening kit. Forensic Sci Int Genet 5:57–63. https://doi.org/10.1016/j.fsigen.2009.11.002
Article CAS PubMed Google Scholar
Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410:103–123. https://doi.org/10.1016/s0005-2728(98)00161-3
Article CAS PubMed Google Scholar
Stoneking M (2000) Hypervariable sites in the mtDNA control region are mutational hotspots. Am J Hum Genet 67:1029–1032. https://doi.org/10.1086/303092
Article CAS PubMed PubMed Central Google Scholar
Parson W, Gusmao L, Hares DR et al (2014) DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet 13:134–142. https://doi.org/10.1016/j.fsigen.2014.07.010
Article CAS PubMed Google Scholar
Bourdon V, Ng C, Harris J, Prinz M, Shapiro E (2014) Optimization of human mtDNA control region sequencing for forensic applications. J Forensic Sci 59:1057–1063. https://doi.org/10.1111/1556-4029.12426
Article CAS PubMed Google Scholar
Hagelberg E (1994) Mitochondrial DNA from Ancient Bones. In: Herrmann B, Hummel S, eds. Ancient DNA: Recovery and Analysis of Genetic Material from Paleontological, Archaeological, Museum, Medical, and Forensic Specimens. Springer New York New York, NY. pp. 195–204
Lutz S, Weisser HJ, Heizmann J, Pollak S (1996) mtDNA as a tool for identification of human remains. Int J Legal Med 109:205–209. https://doi.org/10.1007/BF01225519
Article CAS PubMed Google Scholar
Robin ED, Wong R (1988) Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol 136:507–513. https://doi.org/10.1002/jcp.1041360316
Article CAS PubMed Google Scholar
Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31:e61. https://doi.org/10.1093/nar/gng060
Article CAS PubMed PubMed Central Google Scholar
Cho S, Kim MY, Lee SD (2023) Biogeographic origin and genetic characteristics of the peopling of Jeju Island based on lineage markers. Genes & genomics 45: 307– 18. https://doi.org/10.1007/s13258-022-01363-5
Cho S, Kim MY, Lee JH, Lee HY, Lee SD (2020) Large-scale identification of human bone remains via SNP microarray analysis with reference SNP database. Forensic Sci Int Genet 47:102293. https://doi.org/10.1016/j.fsigen.2020.102293
Article CAS PubMed Google Scholar
Parsons TJ, Coble MD (2001) Increasing the forensic discrimination of mitochondrial DNA testing through analysis of the entire mitochondrial DNA genome. Croat Med J 42:304–309
留言 (0)