Analysis of the sequencing quality of next-generation sequencing for the entire mitochondrial genome in decomposed human samples

Prinz M, Lessig R (2014) Forensic DNA Analysis. Handbook of Forensic Medicine. pp. 1141-83

Butler JM (2005) Forensic DNA typing: Biology, Technology, and Genetics of STR markers, 2nd edn. ed. Elsevier Science & Technology San Diego

Alaeddini R, Walsh SJ, Abbas A (2010) Forensic implications of genetic analyses from degraded DNA–a review. Forensic Sci Int Genet 4:148–157. https://doi.org/10.1016/j.fsigen.2009.09.007

Article  CAS  PubMed  Google Scholar 

Tozzo P, Scrivano S, Sanavio M, Caenazzo L (2020) The role of DNA degradation in the estimation of Post-mortem interval: a systematic review of the current literature. Int J Mol Sci 21. https://doi.org/10.3390/ijms21103540

Galloway A, Birkby WH, Jones AM, Henry TE, Parks BO (1989) Decay rates of human remains in an arid environment. J Forensic Sci 34:607–616

Article  CAS  PubMed  Google Scholar 

Madea B, Henßge C, Reibe S, Tsokos M (2022) Postmortem Changes and Time since Death. Handbook of Forensic Medicine. pp. 91–149

Bar W, Kratzer A, Machler M, Schmid W (1988) Postmortem stability of DNA. Forensic Sci Int 39:59–70. https://doi.org/10.1016/0379-0738(88)90118-1

Article  CAS  PubMed  Google Scholar 

Johnson LA, Ferris JA (2002) Analysis of postmortem DNA degradation by single-cell gel electrophoresis. Forensic Sci Int 126:43–47. https://doi.org/10.1016/s0379-0738(02)00027-0

Article  CAS  PubMed  Google Scholar 

Orlando L, Allaby R, Skoglund P et al (2021) Ancient DNA analysis. Nat Reviews Methods Primers 1:14. https://doi.org/10.1038/s43586-020-00011-0

Article  CAS  Google Scholar 

Zarczynska M, Zarczynski P, Tomsia M (2023) Nucleic acids persistence-benefits and limitations in Forensic Genetics. Genes (Basel) 14. https://doi.org/10.3390/genes14081643

Sorensen A, Rahman E, Canela C, Gangitano D, Hughes-Stamm S (2016) Preservation and rapid purification of DNA from decomposing human tissue samples. Forensic Sci Int Genet 25:182–190. https://doi.org/10.1016/j.fsigen.2016.05.013

Article  CAS  PubMed  Google Scholar 

Mundorff AZ, Amory S, Huel R, Bilic A, Scott AL, Parsons TJ (2018) An economical and efficient method for postmortem DNA sampling in mass fatalities. Forensic Sci Int Genet 36:167–175. https://doi.org/10.1016/j.fsigen.2018.07.009

Article  CAS  PubMed  Google Scholar 

Holmes AS, Roman MG, Hughes-Stamm S (2018) In-field collection and preservation of decomposing human tissues to facilitate rapid purification and STR typing. Forensic Sci Int Genet 36:124–129. https://doi.org/10.1016/j.fsigen.2018.06.015

Article  CAS  PubMed  Google Scholar 

Elwick K, Mayes C, Hughes-Stamm S (2018) Comparative sensitivity and inhibitor tolerance of GlobalFiler(R) PCR amplification and investigator(R) 24plex QS kits for challenging samples. Leg Med (Tokyo) 32:31–36. https://doi.org/10.1016/j.legalmed.2018.01.006

Article  CAS  PubMed  Google Scholar 

Senst A, Scheurer E, Gerlach K, Schulz I (2021) Which tissue to take? A retrospective study of the identification success of altered human remains. J Forensic Leg Med 84:102271. https://doi.org/10.1016/j.jflm.2021.102271

Article  PubMed  Google Scholar 

Jung JK, Lim SB, Park HY et al (2020) A study on the selection of the effective autopsy tissue for DNA identification of decomposed cadavers. Korean J Forensic Sci 21:9–14

Google Scholar 

Schwark T, Heinrich A, von Wurmb-Schwark N (2011) Genetic identification of highly putrefied bodies using DNA from soft tissues. Int J Legal Med 125:891–894. https://doi.org/10.1007/s00414-010-0537-2

Article  PubMed  Google Scholar 

Courts C, Sauer E, Hofmann Y, Madea B, Schyma C (2015) Assessment of STR typing success rate in soft tissues from Putrefied bodies based on a quantitative Grading System for Putrefaction. J Forensic Sci 60:1016–1021. https://doi.org/10.1111/1556-4029.12746

Article  CAS  PubMed  Google Scholar 

Uerlings S, Welter V, Madea B, Grabmüller M (2021) Comparative analysis of DNA extraction processes for DNA-based identification from putrefied bodies in forensic routine work. Forensic Sci Int 320:110707. https://doi.org/10.1016/j.forsciint.2021.110707

Article  CAS  PubMed  Google Scholar 

Helm K, Matzenauer C, Neuhuber F et al (2021) Suitability of specific soft tissue swabs for the forensic identification of highly decomposed bodies. Int J Legal Med 135:1319–1327. https://doi.org/10.1007/s00414-021-02601-3

Article  PubMed  PubMed Central  Google Scholar 

van den Berge M, Wiskerke D, Gerretsen RR, Tabak J, Sijen T (2016) DNA and RNA profiling of excavated human remains with varying postmortem intervals. Int J Legal Med 130:1471–1480. https://doi.org/10.1007/s00414-016-1438-9

Article  PubMed  Google Scholar 

Grubwieser P, Muhlmann R, Berger B, Niederstatter H, Pavlic M, Parson W (2006) A new miniSTR-multiplex displaying reduced amplicon lengths for the analysis of degraded DNA. Int J Legal Med 120:115–120. https://doi.org/10.1007/s00414-005-0013-6

Article  CAS  PubMed  Google Scholar 

Fondevila M, Phillips C, Naveran N et al (2008) Case report: identification of skeletal remains using short-amplicon marker analysis of severely degraded DNA extracted from a decomposed and charred femur. Forensic Sci Int Genet 2:212–218. https://doi.org/10.1016/j.fsigen.2008.02.005

Article  CAS  PubMed  Google Scholar 

Poetsch M, Kamphausen T, Bajanowski T, Schwark T, von Wurmb-Schwark N (2011) Powerplex(R) ES versus powerplex(R) S5–casework testing of the new screening kit. Forensic Sci Int Genet 5:57–63. https://doi.org/10.1016/j.fsigen.2009.11.002

Article  CAS  PubMed  Google Scholar 

Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410:103–123. https://doi.org/10.1016/s0005-2728(98)00161-3

Article  CAS  PubMed  Google Scholar 

Stoneking M (2000) Hypervariable sites in the mtDNA control region are mutational hotspots. Am J Hum Genet 67:1029–1032. https://doi.org/10.1086/303092

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parson W, Gusmao L, Hares DR et al (2014) DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet 13:134–142. https://doi.org/10.1016/j.fsigen.2014.07.010

Article  CAS  PubMed  Google Scholar 

Bourdon V, Ng C, Harris J, Prinz M, Shapiro E (2014) Optimization of human mtDNA control region sequencing for forensic applications. J Forensic Sci 59:1057–1063. https://doi.org/10.1111/1556-4029.12426

Article  CAS  PubMed  Google Scholar 

Hagelberg E (1994) Mitochondrial DNA from Ancient Bones. In: Herrmann B, Hummel S, eds. Ancient DNA: Recovery and Analysis of Genetic Material from Paleontological, Archaeological, Museum, Medical, and Forensic Specimens. Springer New York New York, NY. pp. 195–204

Lutz S, Weisser HJ, Heizmann J, Pollak S (1996) mtDNA as a tool for identification of human remains. Int J Legal Med 109:205–209. https://doi.org/10.1007/BF01225519

Article  CAS  PubMed  Google Scholar 

Robin ED, Wong R (1988) Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol 136:507–513. https://doi.org/10.1002/jcp.1041360316

Article  CAS  PubMed  Google Scholar 

Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31:e61. https://doi.org/10.1093/nar/gng060

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho S, Kim MY, Lee SD (2023) Biogeographic origin and genetic characteristics of the peopling of Jeju Island based on lineage markers. Genes & genomics 45: 307– 18. https://doi.org/10.1007/s13258-022-01363-5

Cho S, Kim MY, Lee JH, Lee HY, Lee SD (2020) Large-scale identification of human bone remains via SNP microarray analysis with reference SNP database. Forensic Sci Int Genet 47:102293. https://doi.org/10.1016/j.fsigen.2020.102293

Article  CAS  PubMed  Google Scholar 

Parsons TJ, Coble MD (2001) Increasing the forensic discrimination of mitochondrial DNA testing through analysis of the entire mitochondrial DNA genome. Croat Med J 42:304–309

留言 (0)

沒有登入
gif