Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O’Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;17(1):78. https://doi.org/10.1038/nrd.2017.267.
Article CAS PubMed PubMed Central Google Scholar
Jamilloux Y, El Jammal T, Vuitton L, Gerfaud-Valentin M, Kerever S, Sève P. JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun Rev. 2019;18(11): 102390. https://doi.org/10.1016/j.autrev.2019.102390.
Article CAS PubMed Google Scholar
Tanaka Y, Luo Y, O’Shea JJ, Nakayamada S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat Rev Rheumatol. 2022;18(3):133–45. https://doi.org/10.1038/s41584-021-00726-8.
Article CAS PubMed PubMed Central Google Scholar
Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 2008;58(1):15–25. https://doi.org/10.1002/art.23177.
Tanaka Y. Managing osteoporosis and joint damage in patients with rheumatoid arthritis: an overview. J Clin Med. 2021;10(6):1241.
Article CAS PubMed PubMed Central Google Scholar
Borgström F, Lekander I, Ivergård M, Ström O, Svedbom A, Alekna V, et al. The International Costs and Utilities Related to Osteoporotic Fractures Study (ICUROS)–quality of life during the first 4 months after fracture. Osteoporos Int. 2013;24(3):811–23. https://doi.org/10.1007/s00198-012-2240-2.
Cook DJ, Guyatt GH, Adachi JD, Clifton J, Griffith LE, Epstein RS, et al. Quality of life issues in women with vertebral fractures due to osteoporosis. Arthritis Rheum. 1993;36(6):750–6. https://doi.org/10.1002/art.1780360603.
Article CAS PubMed Google Scholar
Tanaka Y. Recent progress in treatments of rheumatoid arthritis: an overview of developments in biologics and small molecules, and remaining unmet needs. Rheumatology. 2021;60(Supplement_6):vi12–20. https://doi.org/10.1093/rheumatology/keab609.
Article PubMed PubMed Central Google Scholar
Bullock J, Rizvi SAA, Saleh AM, Ahmed SS, Do DP, Ansari RA, et al. Rheumatoid arthritis: a brief overview of the treatment. Med Princ Pract. 2018;27(6):501–7. https://doi.org/10.1159/000493390.
Article PubMed PubMed Central Google Scholar
Vestergaard P, Rejnmark L, Mosekilde L. Fracture risk associated with use of nonsteroidal anti-inflammatory drugs, acetylsalicylic acid, and acetaminophen and the effects of rheumatoid arthritis and osteoarthritis. Calcif Tissue Int. 2006;79(2):84–94. https://doi.org/10.1007/s00223-006-0020-8.
Article CAS PubMed Google Scholar
Ozen G, Pedro S, Wolfe F, Michaud K. Medications associated with fracture risk in patients with rheumatoid arthritis. Ann Rheum Dis. 2019;78(8):1041–7. https://doi.org/10.1136/annrheumdis-2019-215328.
Article CAS PubMed Google Scholar
Shams S, Martinez JM, Dawson JRD, Flores J, Gabriel M, Garcia G, et al. The therapeutic landscape of rheumatoid arthritis: current state and future directions. Front Pharmacol. 2021;12: 680043. https://doi.org/10.3389/fphar.2021.680043.
Article CAS PubMed PubMed Central Google Scholar
Clark JD, Flanagan ME, Telliez J-B. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem. 2014;57(12):5023–38. https://doi.org/10.1021/jm401490p.
Article CAS PubMed Google Scholar
Shawky AM, Almalki FA, Abdalla AN, Abdelazeem AH, Gouda AM. A comprehensive overview of globally approved JAK inhibitors. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14051001.
Article PubMed PubMed Central Google Scholar
Adam S, Simon N, Steffen U, Andes FT, Scholtysek C, Müller DIH, et al. JAK inhibition increases bone mass in steady-state conditions and ameliorates pathological bone loss by stimulating osteoblast function. Sci Transl Med. 2020. https://doi.org/10.1126/scitranslmed.aay4447.
European Medicines Agency. Xeljanz; procedural steps taken and scientific information after the authorisation. 2023. https://www.ema.europa.eu/en/medicines/human/EPAR/xeljanz. Accessed 19 Apr 2024.
European Medicines Agency. Xeljanx (tofacitinib). 2023. https://www.ema.europa.eu/en/medicines/human/EPAR/xeljanz. Accessed 19 Apr 2024.
Hamar A, Szekanecz Z, Pusztai A, Czókolyová M, Végh E, Pethő Z, et al. Effects of one-year tofacitinib therapy on bone metabolism in rheumatoid arthritis. Osteoporos Int. 2021;32(8):1621–9. https://doi.org/10.1007/s00198-021-05871-0.
Article CAS PubMed PubMed Central Google Scholar
Hansen KE, Mortezavi M, Nagy E, Wang C, Connell CA, Radi Z, et al. Fracture in clinical studies of tofacitinib in rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2022. https://doi.org/10.1177/1759720x221142346.
Article PubMed PubMed Central Google Scholar
Hoisnard L, Lebrun-Vignes B, Maury S, Mahevas M, El Karoui K, Roy L, et al. Adverse events associated with JAK inhibitors in 126,815 reports from the WHO pharmacovigilance database. Sci Rep. 2022;12(1):7140. https://doi.org/10.1038/s41598-022-10777-w.
Article CAS PubMed PubMed Central Google Scholar
Song Y-K, Song J, Kim K, Kwon J-W. Potential adverse events reported with the Janus kinase inhibitors approved for the treatment of rheumatoid arthritis using spontaneous reports and online patient reviews. Front Pharmacol. 2022. https://doi.org/10.3389/fphar.2021.792877.
Article PubMed PubMed Central Google Scholar
Ytterberg SR, Bhatt DL, Mikuls TR, Koch GG, Fleischmann R, Rivas JL, et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N Engl J Med. 2022;386(4):316–26. https://doi.org/10.1056/NEJMoa2109927.
Article CAS PubMed Google Scholar
Uppsala Monitoring Centre. Guideline for using VigiBase data in studies (version 4). 2021. https://who-umc.org/media/05kldqpj/guidelineusingvigibaseinstudies.pdf. Accessed 19 Apr 2024.
Lindquist M. VigiBase, the WHO global ICSR database system: basic facts. Drug Inf J. 2008;42(5):409–19. https://doi.org/10.1177/009286150804200501.
Bate A, Evans SJ. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf. 2009;18(6):427–36. https://doi.org/10.1002/pds.1742.
Article CAS PubMed Google Scholar
European Medicines Agency. Guideline on good pharmacovigilance practices (GVP). Module IX Addendum I—methodological aspects of signal detection from spontaneous reports of suspected adverse reactions. 2017. https://www.ema.europa.eu/en/human-regulatory/post-authorisation/pharmacovigilance/good-pharmacovigilance-practices. Accessed 18 Apr 2024.
Fusaroli M, Salvo F, Begaud B, AlShammari TM, Bate A, Battini V, et al. The REporting of A Disproportionality Analysis for DrUg Safety Signal Detection Using Individual Case Safety Reports in PharmacoVigilance (READUS-PV): explanation and elaboration. Drug Saf. 2024;47(6):585–99. https://doi.org/10.1007/s40264-024-01423-7.
Article PubMed PubMed Central Google Scholar
Murakami K, Kobayashi Y, Uehara S, Suzuki T, Koide M, Yamashita T, et al. A Jak1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro. PLoS ONE. 2017;12(7): e0181126. https://doi.org/10.1371/journal.pone.0181126.
Article CAS PubMed PubMed Central Google Scholar
Park S, Choi SH, Song YK, Kwon JW. Comparison of online patient reviews and national pharmacovigilance data for tramadol-related adverse events: comparative observational study. JMIR Public Health Surveill. 2022;8(1): e33311. https://doi.org/10.2196/33311.
Article PubMed PubMed Central Google Scholar
Traves PG, Murray B, Campigotto F, Galien R, Meng A, Di Paolo JA. JAK selectivity and the implications for clinical inhibition of pharmacodynamic cytokine signalling by filgotinib, upadacitinib, tofacitinib and baricitinib. Ann Rheum Dis. 2021;80(7):865–75. https://doi.org/10.1136/annrheumdis-2020-219012.
留言 (0)