Lee SM, Kim HS, Lee S, Lee JW. Emerging role of (18)F-fluorodeoxyglucose positron emission tomography for guiding management of hepatocellular carcinoma. World J Gastroenterol. 2019;25:1289–306. https://doi.org/10.3748/wjg.v25.i11.1289.
Article CAS PubMed PubMed Central Google Scholar
Xia W, Chen Y, Zhang R, Yan Z, Zhou X, Zhang B, et al. Radiogenomics of hepatocellular carcinoma: multiregion analysis-based identification of prognostic imaging biomarkers by integrating gene data-a preliminary study. Phys Med Biol. 2018;63:035044. https://doi.org/10.1088/1361-6560/aaa609.
Article CAS PubMed Google Scholar
Wakabayashi T, Ouhmich F, Gonzalez-Cabrera C, Felli E, Saviano A, Agnus V, et al. Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int. 2019;13:546–59. https://doi.org/10.1007/s12072-019-09973-0.
Lai Q, Spoletini G, Mennini G, Laureiro ZL, Tsilimigras DI, Pawlik TM, et al. Prognostic role of artificial intelligence among patients with hepatocellular cancer: a systematic review. World J Gastroenterol. 2020;26:6679–88. https://doi.org/10.3748/wjg.v26.i42.6679.
Article PubMed PubMed Central Google Scholar
Shi H, Duan Y, Shi J, Zhang W, Liu W, Shen B, et al. Role of preoperative prediction of microvascular invasion in hepatocellular carcinoma based on the texture of FDG PET image: a comparison of quantitative metabolic parameters and MRI. Front Physiol. 2022;13:928969. https://doi.org/10.3389/fphys.2022.928969.
Article PubMed PubMed Central Google Scholar
Xu X, Zhang HL, Liu QP, Sun SW, Zhang J, Zhu FP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol. 2019;70:1133–44. https://doi.org/10.1016/j.jhep.2019.02.023.
Cho KJ, Choi NK, Shin MH, Chong AR. Clinical usefulness of FDG-PET in patients with hepatocellular carcinoma undergoing surgical resection. Ann Hepatobiliary Pancreat Surg. 2017;21:194–8. https://doi.org/10.14701/ahbps.2017.21.4.194.
Article PubMed PubMed Central Google Scholar
Xu H, Lv W, Feng H, Du D, Yuan Q, Wang Q, et al. Subregional radiomics analysis of PET/CT imaging with intratumor partitioning: application to prognosis for nasopharyngeal carcinoma. Mol Imaging Biol. 2020;22:1414–26. https://doi.org/10.1007/s11307-019-01439-x.
Article CAS PubMed Google Scholar
Han JH, Kim DG, Na GH, Kim EY, Lee SH, Hong TH, et al. Evaluation of prognostic factors on recurrence after curative resections for hepatocellular carcinoma. World J Gastroenterol. 2014;20:17132–40. https://doi.org/10.3748/wjg.v20.i45.17132.
Article PubMed PubMed Central Google Scholar
Cannella R, Santinha J, Beaufrere A, Ronot M, Sartoris R, Cauchy F, et al. Performances and variability of CT radiomics for the prediction of microvascular invasion and survival in patients with HCC: a matter of chance or standardisation? Eur Radiol. 2023;33:7618–28. https://doi.org/10.1007/s00330-023-09852-1.
Napel S, Mu W, Jardim-Perassi BV, Aerts H, Gillies RJ. Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats. Cancer. 2018;124:4633–49. https://doi.org/10.1002/cncr.31630.
Zhao S, Wang J, Jin C, Zhang X, Xue C, Zhou R, et al. Stacking ensemble learning-based [(18)F]FDG PET radiomics for outcome prediction in diffuse large B-cell lymphoma. J Nucl Med. 2023;64:1603–9. https://doi.org/10.2967/jnumed.122.265244.
Article CAS PubMed Google Scholar
Zhao J-W, Shu X, Chen X-X, Liu J-X, Liu M-Q, Ye J, et al. Prediction of early recurrence of hepatocellular carcinoma after liver transplantation based on computed tomography radiomics nomogram. Hepatobiliary Pancreat Dis Int. 2022;21:543–50. https://doi.org/10.1016/j.hbpd.2022.05.013.
Kim S, Shin J, Kim DY, Choi GH, Kim MJ, Choi JY. Radiomics on gadoxetic acid-enhanced magnetic resonance imaging for prediction of postoperative early and late recurrence of single hepatocellular carcinoma. Clin Cancer Res. 2019;25:3847–55. https://doi.org/10.1158/1078-0432.CCR-18-2861.
Article CAS PubMed Google Scholar
Wu J, Gensheimer MF, Dong X, Rubin DL, Napel S, Diehn M, et al. Robust intratumor partitioning to identify high-risk subregions in lung cancer: a pilot study. Int J Radiat Oncol Biol Phys. 2016;95:1504–12. https://doi.org/10.1016/j.ijrobp.2016.03.018.
Article PubMed PubMed Central Google Scholar
Shen H, Chen L, Liu K, Zhao K, Li J, Yu L, et al. A subregion-based positron emission tomography/computed tomography (PET/CT) radiomics model for the classification of non-small cell lung cancer histopathological subtypes. Quant Imaging Med Surg. 2021;11:2918–32. https://doi.org/10.21037/qims-20-1182.
Article PubMed PubMed Central Google Scholar
Waqar M, Van Houdt PJ, Hessen E, Li KL, Zhu X, Jackson A, et al. Visualising spatial heterogeneity in glioblastoma using imaging habitats. Front Oncol. 2022;12:1037896. https://doi.org/10.3389/fonc.2022.1037896.
Article PubMed PubMed Central Google Scholar
Wu J, Gensheimer MF, Zhang N, Guo M, Liang R, Zhang C, et al. Tumor subregion evolution-based imaging features to assess early response and predict prognosis in oropharyngeal cancer. J Nucl Med. 2020;61:327–36. https://doi.org/10.2967/jnumed.119.230037.
Article CAS PubMed PubMed Central Google Scholar
Beaumont J, Acosta O, Devillers A, Palard-Novello X, Chajon E, de Crevoisier R, et al. Voxel-based identification of local recurrence sub-regions from pre-treatment PET/CT for locally advanced head and neck cancers. EJNMMI Res. 2019;9:90. https://doi.org/10.1186/s13550-019-0556-z.
Article CAS PubMed PubMed Central Google Scholar
Gillies RJ, Balagurunathan Y. Perfusion MR imaging of breast cancer: insights using “Habitat Imaging.” Radiology. 2018;288:36–7. https://doi.org/10.1148/radiol.2018180271.
Lee DH, Park JE, Kim N, Park SY, Kim YH, Cho YH, et al. Tumor habitat analysis by magnetic resonance imaging distinguishes tumor progression from radiation necrosis in brain metastases after stereotactic radiosurgery. Eur Radiol. 2022;32:497–507. https://doi.org/10.1007/s00330-021-08204-1.
Fan Y, Dong Y, Yang H, Chen H, Yu Y, Wang X, et al. Subregional radiomics analysis for the detection of the EGFR mutation on thoracic spinal metastases from lung cancer. Phys Med Biol. 2021;66. https://doi.org/10.1088/1361-6560/ac2ea7.
Wu J, Gong G, Cui Y, Li R. Intratumor partitioning and texture analysis of dynamic contrast-enhanced (DCE)-MRI identifies relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy. J Magn Reson Imaging. 2016;44:1107–15. https://doi.org/10.1002/jmri.25279.
Article PubMed PubMed Central Google Scholar
Wei J, Jiang H, Gu D, Niu M, Fu F, Han Y, et al. Radiomics in liver diseases: current progress and future opportunities. Liver Int. 2020;40:2050–63. https://doi.org/10.1111/liv.14555.
Article PubMed PubMed Central Google Scholar
Chen S, Feng S, Wei J, Liu F, Li B, Li X, et al. Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging. Eur Radiol. 2019;29:4177–87. https://doi.org/10.1007/s00330-018-5986-x.
Li Y, Zhang Y, Fang Q, Zhang X, Hou P, Wu H, et al. Radiomics analysis of [(18)F]FDG PET/CT for microvascular invasion and prognosis prediction in very-early- and early-stage hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2021;48:2599–614. https://doi.org/10.1007/s00259-020-05119-9.
Article CAS PubMed Google Scholar
Wang Y, Luo S, Jin G, Fu R, Yu Z, Zhang J. Preoperative clinical-radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using [Formula: see text]F-FDG PET/CT. BMC Med Imaging. 2022;22:70. https://doi.org/10.1186/s12880-022-00796-4.
Article PubMed PubMed Central Google Scholar
Chen L, Liu K, Zhao X, Shen H, Zhao K, Zhu W. Habitat imaging-based (18)F-FDG PET/CT radiomics for the preoperative discrimination of non-small cell lung cancer and Benign inflammatory diseases. Front Oncol. 2021;11:759897. https://doi.org/10.3389/fonc.2021.759897.
留言 (0)