Mortison JD, Schenone M, Myers JA, Zhang Z, Chen L, Ciarlo C, et al. Tetracyclines modify translation by targeting key human rRNA substructures. Cell Chem Biol. 2018;25:1506–18.e1513. https://doi.org/10.1016/j.chembiol.2018.09.010
Article CAS PubMed PubMed Central Google Scholar
Koga Y, Hoang EM, Park Y, Keszei A, Murray J, Shao S, et al. Discovery of C13-aminobenzoyl cycloheximide derivatives that potently inhibit translation elongation. J Am Chem Soc. 2021;143:13473–7. https://doi.org/10.1021/jacs.1c05146
Article CAS PubMed PubMed Central Google Scholar
Iwasaki S, Iwasaki W, Takahashi M, Sakamoto A, Watanabe C, Shichino Y, et al. The translation inhibitor rocaglamide targets a bimolecular cavity between eIF4A and polypurine RNA. Mol Cell. 2019;73:738–48.e739. https://doi.org/10.1016/j.molcel.2018.11.026
Article CAS PubMed Google Scholar
Naineni SK, Liang J, Hull K, Cencic R, Zhu M, Northcote P, et al. Functional mimicry revealed by the crystal structure of an eIF4A:RNA complex bound to the interfacial inhibitor, desmethyl pateamine A. Cell Chem Biol. 2021;28:825–34.e826. https://doi.org/10.1016/j.chembiol.2020.12.006
Article CAS PubMed PubMed Central Google Scholar
Falese JP, Donlic A, Hargrove AE. Targeting RNA with small molecules: from fundamental principles towards the clinic. Chem Soc Rev. 2021;50:2224–43. https://doi.org/10.1039/d0cs01261k
Article CAS PubMed PubMed Central Google Scholar
Singh RN, Ottesen EW, Singh NN. The first orally deliverable small molecule for the treatment of spinal muscular atrophy. Neurosci Insights. 2020;15:263310552097398. https://doi.org/10.1177/2633105520973985
Kathman SG, Koo SJ, Lindsey GL, Her HL, Blue SM, Li H, et al. Remodeling oncogenic transcriptomes by small molecules targeting NONO. Nat Chem Biol. 2023;19:825–836. https://doi.org/10.1038/s41589-023-01270-0
Article CAS PubMed PubMed Central Google Scholar
Licatalosi DD, Ye X, Jankowsky E. Approaches for measuring the dynamics of RNA–protein interactions. WIREs RNA. 2020;11:1565. https://doi.org/10.1002/wrna.1565
Meiser N, Fuks C, Hengesbach M. Cooperative analysis of structural dynamics in RNA-protein complexes by single-molecule förster resonance energy transfer spectroscopy. Molecules. 2020;25:2057. https://doi.org/10.3390/molecules25092057
Article CAS PubMed PubMed Central Google Scholar
Ganser LR, Kelly ML, Herschlag D, Al-Hashimi HM. The roles of structural dynamics in the cellular functions of RNAs. Nat Rev Mol Cell Biol. 2019;20:474–89. https://doi.org/10.1038/s41580-019-0136-0
Article CAS PubMed PubMed Central Google Scholar
Zhang Z, Zhang Y, Liu JL. eCRUIS captures RNA-protein interaction in vitro and in vivo. Exp Cell Res. 2024;438:114051. https://doi.org/10.1016/j.yexcr.2024.114051
Article CAS PubMed Google Scholar
Zeng C, Jian Y, Vosoughi S, Zeng C, Zhao Y. Evaluating native-like structures of RNA-protein complexes through the deep learning method. Nat Commun. 2023;14:1060. https://doi.org/10.1038/s41467-023-36720-9
Article CAS PubMed PubMed Central Google Scholar
Seo KW, Kleiner RE. Profiling dynamic RNA–protein interactions using small-molecule-induced RNA editing. Nat Chem Biol. 2023;19:1361–71. https://doi.org/10.1038/s41589-023-01372-9
Article CAS PubMed PubMed Central Google Scholar
Li M, Li D, Lin L, Wang P, Zhao W. Precise interference of RNA-protein interaction by CRISPR-Cas13-mediated peptide competition. ACS Synth Biol. 2023;12:2827–33. https://doi.org/10.1021/acssynbio.3c00287
Article CAS PubMed Google Scholar
Connelly CM, Moon MH, Schneekloth JS Jr. The emerging role of RNA as a therapeutic target for small molecules. Cell Chem Biol. 2016;23:1077–90. https://doi.org/10.1016/j.chembiol.2016.05.021
Article CAS PubMed PubMed Central Google Scholar
Donlic A, Hargrove AE. Targeting RNA in mammalian systems with small molecules. WIREs RNA. 2018;9:1477. https://doi.org/10.1002/wrna.1477
Hargrove AE. Small molecule-RNA targeting: starting with the fundamentals. Chem Commun (Camb). 2020;56:14744–56. https://doi.org/10.1039/d0cc06796b
Article CAS PubMed Google Scholar
Costales MG, Childs-Disney JL, Haniff HS, Disney MD. How we think about targeting RNA with small molecules. J Med Chem. 2020;63:8880–8900. https://doi.org/10.1021/acs.jmedchem.9b01927
Article CAS PubMed PubMed Central Google Scholar
Warner KD, Hajdin CE, Weeks KM. Principles for targeting RNA with drug-like small molecules. Nat Rev Drug Discov. 2018;17:547–58. https://doi.org/10.1038/nrd.2018.93
Article CAS PubMed PubMed Central Google Scholar
Hewitt WM, Calabrese DR, Schneekloth JS Jr. Evidence for ligandable sites in structured RNA throughout the Protein Data Bank. Bioorg Med Chem. 2019;27:2253–60. https://doi.org/10.1016/j.bmc.2019.04.010
Article CAS PubMed PubMed Central Google Scholar
Krüger DM, Neubacher S, Grossmann TN. Protein–RNA interactions: structural characteristics and hotspot amino acids. RNA. 2018;24:1457–65. https://doi.org/10.1261/rna.066464.118
Article CAS PubMed PubMed Central Google Scholar
Sheridan RP, Maiorov VN, Holloway MK, Cornell WD, Gao YD. Drug-like density: a method of quantifying the “bindability” of a protein target based on a very large set of pockets and drug-like ligands from the protein data bank. J Chem Inf Model. 2010;50:2029–40. https://doi.org/10.1021/ci100312t
Article CAS PubMed Google Scholar
Andrei SA, Sijbesma E, Hann M, Davis J, O'Mahony G, Perry M, et al. Stabilization of protein-protein interactions in drug discovery. Expert Opin Drug Discov. 2017;12:925–40. https://doi.org/10.1080/17460441.2017.1346608
Article CAS PubMed Google Scholar
Bulawa CE, Connelly S, Devit M, Wang L, Weigel C, Fleming JA, et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc Natl Acad Sci. 2012;109:9629–34. https://doi.org/10.1073/pnas.1121005109
Article PubMed PubMed Central Google Scholar
Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011;10:868–80. https://doi.org/10.1038/nrd3531
Article CAS PubMed Google Scholar
Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014;15:829–45. https://doi.org/10.1038/nrg3813
Article CAS PubMed PubMed Central Google Scholar
Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol. 2002;3:195–205. https://doi.org/10.1038/nrm760
留言 (0)