Targeting RNA-protein interactions with small molecules: promise and therapeutic potential

Mortison JD, Schenone M, Myers JA, Zhang Z, Chen L, Ciarlo C, et al. Tetracyclines modify translation by targeting key human rRNA substructures. Cell Chem Biol. 2018;25:1506–18.e1513. https://doi.org/10.1016/j.chembiol.2018.09.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koga Y, Hoang EM, Park Y, Keszei A, Murray J, Shao S, et al. Discovery of C13-aminobenzoyl cycloheximide derivatives that potently inhibit translation elongation. J Am Chem Soc. 2021;143:13473–7. https://doi.org/10.1021/jacs.1c05146

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iwasaki S, Iwasaki W, Takahashi M, Sakamoto A, Watanabe C, Shichino Y, et al. The translation inhibitor rocaglamide targets a bimolecular cavity between eIF4A and polypurine RNA. Mol Cell. 2019;73:738–48.e739. https://doi.org/10.1016/j.molcel.2018.11.026

Article  CAS  PubMed  Google Scholar 

Naineni SK, Liang J, Hull K, Cencic R, Zhu M, Northcote P, et al. Functional mimicry revealed by the crystal structure of an eIF4A:RNA complex bound to the interfacial inhibitor, desmethyl pateamine A. Cell Chem Biol. 2021;28:825–34.e826. https://doi.org/10.1016/j.chembiol.2020.12.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falese JP, Donlic A, Hargrove AE. Targeting RNA with small molecules: from fundamental principles towards the clinic. Chem Soc Rev. 2021;50:2224–43. https://doi.org/10.1039/d0cs01261k

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh RN, Ottesen EW, Singh NN. The first orally deliverable small molecule for the treatment of spinal muscular atrophy. Neurosci Insights. 2020;15:263310552097398. https://doi.org/10.1177/2633105520973985

Article  Google Scholar 

Kathman SG, Koo SJ, Lindsey GL, Her HL, Blue SM, Li H, et al. Remodeling oncogenic transcriptomes by small molecules targeting NONO. Nat Chem Biol. 2023;19:825–836. https://doi.org/10.1038/s41589-023-01270-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Licatalosi DD, Ye X, Jankowsky E. Approaches for measuring the dynamics of RNA–protein interactions. WIREs RNA. 2020;11:1565. https://doi.org/10.1002/wrna.1565

Article  CAS  Google Scholar 

Meiser N, Fuks C, Hengesbach M. Cooperative analysis of structural dynamics in RNA-protein complexes by single-molecule förster resonance energy transfer spectroscopy. Molecules. 2020;25:2057. https://doi.org/10.3390/molecules25092057

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ganser LR, Kelly ML, Herschlag D, Al-Hashimi HM. The roles of structural dynamics in the cellular functions of RNAs. Nat Rev Mol Cell Biol. 2019;20:474–89. https://doi.org/10.1038/s41580-019-0136-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Z, Zhang Y, Liu JL. eCRUIS captures RNA-protein interaction in vitro and in vivo. Exp Cell Res. 2024;438:114051. https://doi.org/10.1016/j.yexcr.2024.114051

Article  CAS  PubMed  Google Scholar 

Zeng C, Jian Y, Vosoughi S, Zeng C, Zhao Y. Evaluating native-like structures of RNA-protein complexes through the deep learning method. Nat Commun. 2023;14:1060. https://doi.org/10.1038/s41467-023-36720-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seo KW, Kleiner RE. Profiling dynamic RNA–protein interactions using small-molecule-induced RNA editing. Nat Chem Biol. 2023;19:1361–71. https://doi.org/10.1038/s41589-023-01372-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li M, Li D, Lin L, Wang P, Zhao W. Precise interference of RNA-protein interaction by CRISPR-Cas13-mediated peptide competition. ACS Synth Biol. 2023;12:2827–33. https://doi.org/10.1021/acssynbio.3c00287

Article  CAS  PubMed  Google Scholar 

Connelly CM, Moon MH, Schneekloth JS Jr. The emerging role of RNA as a therapeutic target for small molecules. Cell Chem Biol. 2016;23:1077–90. https://doi.org/10.1016/j.chembiol.2016.05.021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Donlic A, Hargrove AE. Targeting RNA in mammalian systems with small molecules. WIREs RNA. 2018;9:1477. https://doi.org/10.1002/wrna.1477

Article  CAS  Google Scholar 

Hargrove AE. Small molecule-RNA targeting: starting with the fundamentals. Chem Commun (Camb). 2020;56:14744–56. https://doi.org/10.1039/d0cc06796b

Article  CAS  PubMed  Google Scholar 

Costales MG, Childs-Disney JL, Haniff HS, Disney MD. How we think about targeting RNA with small molecules. J Med Chem. 2020;63:8880–8900. https://doi.org/10.1021/acs.jmedchem.9b01927

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warner KD, Hajdin CE, Weeks KM. Principles for targeting RNA with drug-like small molecules. Nat Rev Drug Discov. 2018;17:547–58. https://doi.org/10.1038/nrd.2018.93

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hewitt WM, Calabrese DR, Schneekloth JS Jr. Evidence for ligandable sites in structured RNA throughout the Protein Data Bank. Bioorg Med Chem. 2019;27:2253–60. https://doi.org/10.1016/j.bmc.2019.04.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krüger DM, Neubacher S, Grossmann TN. Protein–RNA interactions: structural characteristics and hotspot amino acids. RNA. 2018;24:1457–65. https://doi.org/10.1261/rna.066464.118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sheridan RP, Maiorov VN, Holloway MK, Cornell WD, Gao YD. Drug-like density: a method of quantifying the “bindability” of a protein target based on a very large set of pockets and drug-like ligands from the protein data bank. J Chem Inf Model. 2010;50:2029–40. https://doi.org/10.1021/ci100312t

Article  CAS  PubMed  Google Scholar 

Andrei SA, Sijbesma E, Hann M, Davis J, O'Mahony G, Perry M, et al. Stabilization of protein-protein interactions in drug discovery. Expert Opin Drug Discov. 2017;12:925–40. https://doi.org/10.1080/17460441.2017.1346608

Article  CAS  PubMed  Google Scholar 

Bulawa CE, Connelly S, Devit M, Wang L, Weigel C, Fleming JA, et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc Natl Acad Sci. 2012;109:9629–34. https://doi.org/10.1073/pnas.1121005109

Article  PubMed  PubMed Central  Google Scholar 

Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011;10:868–80. https://doi.org/10.1038/nrd3531

Article  CAS  PubMed  Google Scholar 

Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014;15:829–45. https://doi.org/10.1038/nrg3813

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol. 2002;3:195–205. https://doi.org/10.1038/nrm760

Article  CAS 

留言 (0)

沒有登入
gif