A fragment-based screen for inhibitors of Escherichia coli N5-CAIR mutase

Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, et al. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther. 2021;6:162 https://doi.org/10.1038/s41392-021-00553-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moffatt BA, Ashihara H. Purine and pyrimidine nucleotide synthesis and metabolism. Arabidopsis Book. 2002;1:e0018 https://doi.org/10.1199/tab.0018

Article  PubMed  PubMed Central  Google Scholar 

Murray AW. The biological significance of purine salvage. Annu Rev Biochem. 1971;40:811–26. https://doi.org/10.1146/annurev.bi.40.070171.004115

Article  CAS  PubMed  Google Scholar 

Zhang Y, Morar M, Ealick SE. Structural biology of the purine biosynthetic pathway. Cell Mol Life Sci. 2008;65:3699–724. https://doi.org/10.1007/s00018-008-8295-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greasley SE, Marsilje TH, Cai H, Baker S, Benkovic SJ, Boger DL, et al. Unexpected formation of an epoxide-derived multisubstrate adduct inhibitor on the active site of GAR transformylase. Biochemistry. 2001;40:13538–47. https://doi.org/10.1021/bi011482+

Article  CAS  PubMed  Google Scholar 

Zhang Y, Desharnais J, Greasley SE, Beardsley GP, Boger DL, Wilson IA. Crystal structures of human GAR Tfase at low and high pH and with substrate beta-GAR. Biochemistry. 2002;41:14206–15. https://doi.org/10.1021/bi020522m

Article  CAS  PubMed  Google Scholar 

Wolan DW, Greasley SE, Wall MJ, Benkovic SJ, Wilson IA. Structure of avian AICAR transformylase with a multisubstrate adduct inhibitor beta-DADF identifies the folate binding site. Biochemistry. 2003;42:10904–14. https://doi.org/10.1021/bi030106h

Article  CAS  PubMed  Google Scholar 

Cheong CG, Wolan DW, Greasley SE, Horton PA, Beardsley GP, Wilson IA. Crystal structures of human bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase/IMP cyclohydrolase in complex with potent sulfonyl-containing antifolates. J Biol Chem. 2004;279:18034–45. https://doi.org/10.1074/jbc.M313691200

Article  CAS  PubMed  Google Scholar 

Huang N, Xu C, Deng L, Li X, Bian Z, Zhang Y, et al. PAICS contributes to gastric carcinogenesis and participates in DNA damage response by interacting with histone deacetylase 1/2. Cell Death Dis. 2020;11:507. https://doi.org/10.1038/s41419-020-2708-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huo A, Xiong X. PAICS as a potential target for cancer therapy linking purine biosynthesis to cancer progression. Life Sci. 2023;331:122070 https://doi.org/10.1016/j.lfs.2023.122070

Article  CAS  PubMed  Google Scholar 

Kappock TJ, Ealick SE, Stubbe J. Modular evolution of the purine biosynthetic pathway. Curr Opin Chem Biol. 2000;4:567–72. https://doi.org/10.1016/s1367-5931(00)00133-2

Article  CAS  PubMed  Google Scholar 

Firestine SM, Davisson VJ. Carboxylases in de novo purine biosynthesis. Characterization of the Gallus gallus bifunctional enzyme. Biochemistry. 1994;33:11917–26. https://doi.org/10.1021/bi00205a030

Article  CAS  PubMed  Google Scholar 

Firestine SM, Poon SW, Mueller EJ, Stubbe J, Davisson VJ. Reactions catalyzed by 5-aminoimidazole ribonucleotide carboxylases from Escherichia coli and Gallus gallus: a case for divergent catalytic mechanisms. Biochemistry. 1994;33:11927–34. https://doi.org/10.1021/bi00205a031

Article  CAS  PubMed  Google Scholar 

Firestine SM, Wu W, Youn H, Davisson VJ. Interrogating the mechanism of a tight binding inhibitor of AIR carboxylase. Bioorg Med Chem. 2009;17:794–803. https://doi.org/10.1016/j.bmc.2008.11.057

Article  CAS  PubMed  Google Scholar 

Mueller EJ, Meyer E, Rudolph J, Davisson VJ, Stubbe J. N5-carboxyaminoimidazole ribonucleotide: evidence for a new intermediate and two new enzymatic activities in the de novo purine biosynthetic pathway of Escherichia coli. Biochemistry. 1994;33:2269–78. https://doi.org/10.1021/bi00174a038

Article  CAS  PubMed  Google Scholar 

Samant S, Lee H, Ghassemi M, Chen J, Cook JL, Mankin AS, et al. Nucleotide biosynthesis is critical for growth of bacteria in human blood. PLoS Pathog. 2008;4:e37. https://doi.org/10.1371/journal.ppat.0040037

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thoden JB, Holden HM, Firestine SM. Structural analysis of the active site geometry of N5-carboxyaminoimidazole ribonucleotide synthetase from Escherichia coli. Biochemistry. 2008;47:13346–53. https://doi.org/10.1021/bi801734z

Article  CAS  PubMed  Google Scholar 

Sharma MF. The Development and application of a fluorescence based activity assay for bacterial N 5-Cair Mutase. Wayne State University; 2020.

Kim A, Wolf NM, Zhu T, Johnson ME, Deng J, Cook JL, et al. Identification of Bacillus anthracis PurE inhibitors with antimicrobial activity. Bioorg Med Chem. 2015;23:1492–9. https://doi.org/10.1016/j.bmc.2015.02.016

Article  CAS  PubMed  Google Scholar 

Lei H, Jones C, Zhu T, Patel K, Wolf NM, Fung LW, et al. Identification of B. anthracis N(5)-carboxyaminoimidazole ribonucleotide mutase (PurE) active site binding compounds via fragment library screening. Bioorg Med Chem. 2016;24:596–605. https://doi.org/10.1016/j.bmc.2015.12.029

Article  CAS  PubMed  Google Scholar 

Belfon KKJ, Sharma N, Zigweid R, Bolejack M, Davies D, Edwards TE, et al. Structure-Guided Discovery of N(5)-CAIR Mutase Inhibitors. Biochemistry. 2023;62:2587–96. https://doi.org/10.1021/acs.biochem.2c00705

Article  CAS  PubMed  Google Scholar 

Ravi GRR, Biswal J, Kanagarajan S, Jeyakanthan J. Exploration of N5-CAIR mutase novel inhibitors from pyrococcus horikoshii OT3: a computational study. J Comput Biol. 2019;26:457–72. https://doi.org/10.1089/cmb.2018.0248

Article  CAS  PubMed  Google Scholar 

Firestine SM. Biochemical and mechanistic characterization of Gallus gallus 5-aminoimidazole ribonucleotide carboxylase: Purdue University; 1995.

Kirsch P, Hartman AM, Hirsch AKH, Empting M. Concepts and core principles of fragment-based drug design. Molecules. 2019;24:4309. https://doi.org/10.3390/molecules24234309

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang JH, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen. 1999;4:67–73. https://doi.org/10.1177/108705719900400206

Article  CAS  PubMed  Google Scholar 

Wang S, Denton KE, Hobbs KF, Weaver T, McFarlane JMB, Connelly KE, et al. Optimization of ligands using focused DNA-encoded libraries to develop a selective, cell-permeable CBX8 chromodomain inhibitor. ACS Chem Biol. 2020;15:112–31. https://doi.org/10.1021/acschembio.9b00654

Article  CAS  PubMed  Google Scholar 

Stefan MA, Velazquez GM, Garcia GA. High-throughput screening to discover inhibitors of the CarD.RNA polymerase protein-protein interaction in Mycobacterium tuberculosis. Sci Rep. 2020;10:21309. https://doi.org/10.1038/s41598-020-78269-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Copeland RA. Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists. John Wiley & Sons; 2013.

Offensperger F, Tin G, Duran-Frigola M, Hahn E, Dobner S, Ende CWA, et al. Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells. Science. 2024;384:eadk5864. https://doi.org/10.1126/science.adk5864

Article  CAS  PubMed  Google Scholar 

Firestine SM, Davisson VJ. A tight binding inhibitor of 5-aminoimidazole ribonucleotide carboxylase. J Med Chem. 1993;36:3484–6. https://doi.org/10.1021/jm00074a033

留言 (0)

沒有登入
gif