Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, et al. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther. 2021;6:162 https://doi.org/10.1038/s41392-021-00553-z
Article CAS PubMed PubMed Central Google Scholar
Moffatt BA, Ashihara H. Purine and pyrimidine nucleotide synthesis and metabolism. Arabidopsis Book. 2002;1:e0018 https://doi.org/10.1199/tab.0018
Article PubMed PubMed Central Google Scholar
Murray AW. The biological significance of purine salvage. Annu Rev Biochem. 1971;40:811–26. https://doi.org/10.1146/annurev.bi.40.070171.004115
Article CAS PubMed Google Scholar
Zhang Y, Morar M, Ealick SE. Structural biology of the purine biosynthetic pathway. Cell Mol Life Sci. 2008;65:3699–724. https://doi.org/10.1007/s00018-008-8295-8
Article CAS PubMed PubMed Central Google Scholar
Greasley SE, Marsilje TH, Cai H, Baker S, Benkovic SJ, Boger DL, et al. Unexpected formation of an epoxide-derived multisubstrate adduct inhibitor on the active site of GAR transformylase. Biochemistry. 2001;40:13538–47. https://doi.org/10.1021/bi011482+
Article CAS PubMed Google Scholar
Zhang Y, Desharnais J, Greasley SE, Beardsley GP, Boger DL, Wilson IA. Crystal structures of human GAR Tfase at low and high pH and with substrate beta-GAR. Biochemistry. 2002;41:14206–15. https://doi.org/10.1021/bi020522m
Article CAS PubMed Google Scholar
Wolan DW, Greasley SE, Wall MJ, Benkovic SJ, Wilson IA. Structure of avian AICAR transformylase with a multisubstrate adduct inhibitor beta-DADF identifies the folate binding site. Biochemistry. 2003;42:10904–14. https://doi.org/10.1021/bi030106h
Article CAS PubMed Google Scholar
Cheong CG, Wolan DW, Greasley SE, Horton PA, Beardsley GP, Wilson IA. Crystal structures of human bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase/IMP cyclohydrolase in complex with potent sulfonyl-containing antifolates. J Biol Chem. 2004;279:18034–45. https://doi.org/10.1074/jbc.M313691200
Article CAS PubMed Google Scholar
Huang N, Xu C, Deng L, Li X, Bian Z, Zhang Y, et al. PAICS contributes to gastric carcinogenesis and participates in DNA damage response by interacting with histone deacetylase 1/2. Cell Death Dis. 2020;11:507. https://doi.org/10.1038/s41419-020-2708-5
Article CAS PubMed PubMed Central Google Scholar
Huo A, Xiong X. PAICS as a potential target for cancer therapy linking purine biosynthesis to cancer progression. Life Sci. 2023;331:122070 https://doi.org/10.1016/j.lfs.2023.122070
Article CAS PubMed Google Scholar
Kappock TJ, Ealick SE, Stubbe J. Modular evolution of the purine biosynthetic pathway. Curr Opin Chem Biol. 2000;4:567–72. https://doi.org/10.1016/s1367-5931(00)00133-2
Article CAS PubMed Google Scholar
Firestine SM, Davisson VJ. Carboxylases in de novo purine biosynthesis. Characterization of the Gallus gallus bifunctional enzyme. Biochemistry. 1994;33:11917–26. https://doi.org/10.1021/bi00205a030
Article CAS PubMed Google Scholar
Firestine SM, Poon SW, Mueller EJ, Stubbe J, Davisson VJ. Reactions catalyzed by 5-aminoimidazole ribonucleotide carboxylases from Escherichia coli and Gallus gallus: a case for divergent catalytic mechanisms. Biochemistry. 1994;33:11927–34. https://doi.org/10.1021/bi00205a031
Article CAS PubMed Google Scholar
Firestine SM, Wu W, Youn H, Davisson VJ. Interrogating the mechanism of a tight binding inhibitor of AIR carboxylase. Bioorg Med Chem. 2009;17:794–803. https://doi.org/10.1016/j.bmc.2008.11.057
Article CAS PubMed Google Scholar
Mueller EJ, Meyer E, Rudolph J, Davisson VJ, Stubbe J. N5-carboxyaminoimidazole ribonucleotide: evidence for a new intermediate and two new enzymatic activities in the de novo purine biosynthetic pathway of Escherichia coli. Biochemistry. 1994;33:2269–78. https://doi.org/10.1021/bi00174a038
Article CAS PubMed Google Scholar
Samant S, Lee H, Ghassemi M, Chen J, Cook JL, Mankin AS, et al. Nucleotide biosynthesis is critical for growth of bacteria in human blood. PLoS Pathog. 2008;4:e37. https://doi.org/10.1371/journal.ppat.0040037
Article CAS PubMed PubMed Central Google Scholar
Thoden JB, Holden HM, Firestine SM. Structural analysis of the active site geometry of N5-carboxyaminoimidazole ribonucleotide synthetase from Escherichia coli. Biochemistry. 2008;47:13346–53. https://doi.org/10.1021/bi801734z
Article CAS PubMed Google Scholar
Sharma MF. The Development and application of a fluorescence based activity assay for bacterial N 5-Cair Mutase. Wayne State University; 2020.
Kim A, Wolf NM, Zhu T, Johnson ME, Deng J, Cook JL, et al. Identification of Bacillus anthracis PurE inhibitors with antimicrobial activity. Bioorg Med Chem. 2015;23:1492–9. https://doi.org/10.1016/j.bmc.2015.02.016
Article CAS PubMed Google Scholar
Lei H, Jones C, Zhu T, Patel K, Wolf NM, Fung LW, et al. Identification of B. anthracis N(5)-carboxyaminoimidazole ribonucleotide mutase (PurE) active site binding compounds via fragment library screening. Bioorg Med Chem. 2016;24:596–605. https://doi.org/10.1016/j.bmc.2015.12.029
Article CAS PubMed Google Scholar
Belfon KKJ, Sharma N, Zigweid R, Bolejack M, Davies D, Edwards TE, et al. Structure-Guided Discovery of N(5)-CAIR Mutase Inhibitors. Biochemistry. 2023;62:2587–96. https://doi.org/10.1021/acs.biochem.2c00705
Article CAS PubMed Google Scholar
Ravi GRR, Biswal J, Kanagarajan S, Jeyakanthan J. Exploration of N5-CAIR mutase novel inhibitors from pyrococcus horikoshii OT3: a computational study. J Comput Biol. 2019;26:457–72. https://doi.org/10.1089/cmb.2018.0248
Article CAS PubMed Google Scholar
Firestine SM. Biochemical and mechanistic characterization of Gallus gallus 5-aminoimidazole ribonucleotide carboxylase: Purdue University; 1995.
Kirsch P, Hartman AM, Hirsch AKH, Empting M. Concepts and core principles of fragment-based drug design. Molecules. 2019;24:4309. https://doi.org/10.3390/molecules24234309
Article CAS PubMed PubMed Central Google Scholar
Zhang JH, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen. 1999;4:67–73. https://doi.org/10.1177/108705719900400206
Article CAS PubMed Google Scholar
Wang S, Denton KE, Hobbs KF, Weaver T, McFarlane JMB, Connelly KE, et al. Optimization of ligands using focused DNA-encoded libraries to develop a selective, cell-permeable CBX8 chromodomain inhibitor. ACS Chem Biol. 2020;15:112–31. https://doi.org/10.1021/acschembio.9b00654
Article CAS PubMed Google Scholar
Stefan MA, Velazquez GM, Garcia GA. High-throughput screening to discover inhibitors of the CarD.RNA polymerase protein-protein interaction in Mycobacterium tuberculosis. Sci Rep. 2020;10:21309. https://doi.org/10.1038/s41598-020-78269-3
Article CAS PubMed PubMed Central Google Scholar
Copeland RA. Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists. John Wiley & Sons; 2013.
Offensperger F, Tin G, Duran-Frigola M, Hahn E, Dobner S, Ende CWA, et al. Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells. Science. 2024;384:eadk5864. https://doi.org/10.1126/science.adk5864
Article CAS PubMed Google Scholar
Firestine SM, Davisson VJ. A tight binding inhibitor of 5-aminoimidazole ribonucleotide carboxylase. J Med Chem. 1993;36:3484–6. https://doi.org/10.1021/jm00074a033
留言 (0)