Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Diseases. 2018;5:77–106.
Article CAS PubMed PubMed Central Google Scholar
Trayes KP, Cokenakes SE. Breast cancer treatment. Am Family Phys. 2021;104:171–8.
Martin AM, Weber BL. Genetic and hormonal risk factors in breast cancer. JNCI. 2000;92:1126–35.
Article CAS PubMed Google Scholar
Sun J, Li J, Kong X, Guo Q. Peimine inhibits MCF-7 breast cancer cell growth by modulating inflammasome activation: critical roles of MAPK and NF-κB signaling. Anti-Cancer Agents Med Chem. 2023;23:317–27.
Kavarthapu R, Anbazhagan R, Dufau ML. Crosstalk between PRLR and EGFR/HER2 signaling pathways in breast cancer. Cancers. 2021;13:4685.
Article CAS PubMed PubMed Central Google Scholar
Awasthi A, Raju MB, Rahman MA. Current insights of inhibitors of p38 mitogen-activated protein kinase in inflammation. Med Chem. 2021;17:555–75.
Article CAS PubMed Google Scholar
Kudaravalli S, den Hollander P, Mani SA. Role of p38 MAP kinase in cancer stem cells and metastasis. Oncogene. 2022;41:3177–85.
Article CAS PubMed PubMed Central Google Scholar
Jantova S, Ovadekova R, Letašiová S, Špirková K, Stankovský Š. Antimicrobial activity of some substituted triazoloquinazolines. Folia Microbiol. 2005;50:90–4.
Hussein MA. Synthesis of some novel triazoloquinazolines and triazinoquinazolines and their evaluation for anti-inflammatory activity. Med Chem Res. 2012;21:1876–86.
Ouahrouch A, Taourirte M, Engels JW, Benjelloun S, Lazrek HB. Synthesis of new 1, 2, 3-triazol-4-yl-quinazoline nucleoside and acyclonucleoside analogues. Molecules. 2014;19:3638–53.
Article PubMed PubMed Central Google Scholar
Deng XQ, Xiao CR, Wei CX, Quan ZS. Synthesis and anticonvulsant activity of 5-substituted-[1, 2, 4] triazolo [4, 3-a] quinazolines. Chinese Organ Chem. 2011;31:2082.
Abuelizz HA, Anouar EH, Ahmad R, Azman NI, Marzouk M, Al-Salahi R. Triazoloquinazolines as a new class of potent α-glucosidase inhibitors: in vitro evaluation and docking study. PLoS ONE. 2019;14:e0220379.
Article CAS PubMed PubMed Central Google Scholar
Al-Salahi R, El-Tahir KE, Alswaidan I, Lolak N, Hamidaddin M, Marzouk M. Biological effects of a new set 1, 2, 4-triazolo [1, 5-a] quinazolines on heart rate and blood pressure. Chem Central J. 2014;8:1–8.
Abuelizz HA, Al-Salahi R. An overview of triazoloquinazolines: pharmacological significance and recent developments. Bioorg Chem. 2021;115:105263.
Article CAS PubMed Google Scholar
Sachdeva H, Saquib M, Tanwar K. Design and development of triazole derivatives as prospective anticancer agents: a review. Anti-Cancer Agents Med Chem. 2022;22:3269–79.
Alam MM. 1, 2, 3‐Triazole hybrids as anticancer agents: a review. Archiv der Pharmazie. 2022;355:2100158.
Ahmad I. An insight into the therapeutic potential of quinazoline derivatives as anticancer agents. MedChemComm. 2017;8:871–85.
Article PubMed PubMed Central Google Scholar
Ravez S, Castillo-Aguilera O, Depreux P, Goossens L. Quinazoline derivatives as anticancer drugs: a patent review (2011–present). Expert Opin Ther Patents. 2015;25:789–804.
Pingili D, Svum P, Nulgumnalli Manjunathaiah R. Design, Synthesis, In‐silico Studies and Antiproliferative Evaluation of Novel Indazole Derivatives as Small Molecule Inhibitors of B‐Raf. ChemistrySelect. 2023;8:e202300291.
Awasthi A, Rahman MA, Bhagavan Raju M. Synthesis, in silico studies, and in vitro anti-inflammatory activity of novel imidazole derivatives targeting P38 MAP kinase. ACS Omega. 2023;8:17788–99.
Article CAS PubMed PubMed Central Google Scholar
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:42717.
Article PubMed PubMed Central Google Scholar
Dhanik A, McMurray JS, Kavraki LE. DINC: A new AutoDock-based protocol for docking large ligands. BMC Struct. Biol. 2013;13:S11.
留言 (0)