CYP3A4 drug metabolism considerations in pediatric pharmacotherapy

de Wildt SN, Kearns GL, Leeder JS, van den Anker JN. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet. 1999. https://doi.org/10.2165/00003088-199937060-00004.

Johnson TN, Tanner MS, Taylor CJ, Tucker GT. Enterocytic CYP3A4 in a paediatric population: developmental changes and the effect of coeliac disease and cystic fibrosis. Br J Clin Pharmacol. 2001. https://doi.org/10.1046/j.1365-2125.2001.01370.x.

Ince I. Maturation of cytochrome P450 3A mediated drug metabolism: towards individualized dosing in children. 2024. Available from: https://repub.eur.nl/pub/50146/131129_Ince-Ibrahim.pdf.

Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes I. Evidence for its hemoprotein nature. J Biol Chem. 1964;239:2370–8.

Article  CAS  PubMed  Google Scholar 

Nebert DW, Gonzalez FJ. P450 genes: structure, evolution, and regulation. Annu Rev Biochem. 1987. https://doi.org/10.1146/annurev.bi.56.070187.004501.

Lu H, Rosenbaum S. Developmental pharmacokinetics in pediatric populations. J Pediatr Pharmacol Ther. 2014;19:262–76. https://doi.org/10.5863/1551-6776-19.4.262.

Article  PubMed  PubMed Central  Google Scholar 

Ince I, Knibbe CA, Danhof M, de Wildt SN. Developmental changes in the expression and function of cytochrome P450 3A isoforms: evidence from in vitro and in vivo investigations. Clin Pharmacokinet. 2013;52:333–45. https://doi.org/10.1007/s40262-013-0041-1.

Article  CAS  PubMed  Google Scholar 

Lamba JK, Lamba V, Schuetz EG. Genetic variation in cytochrome P450 3A4 and 3A5: Functional and clinical implications. Pharmacogenomics. 2009;10:519–39.

Google Scholar 

Ryu SH, et al. Drug-drug interactions mediated by cytochrome P450 enzymes: the role of inducers and inhibitors. Clin Ther. 2013;35:797–810.

Google Scholar 

Edwards DJ, Bellevue FH 3rd, Woster PM. Identification of 6’,7’-dihydroxybergamottin, a cytochrome P450 inhibitor, in grapefruit juice. Drug Metab Dispos. 1996;24:1287–90.

CAS  PubMed  Google Scholar 

Joyce RP, Hu VW, Wang J. The history, mechanism, and perspectives of nirmatrelvir (PF-07321332): an orally bioavailable main protease inhibitor used in combination with ritonavir to reduce COVID-19-related hospitalizations. Med Chem Res. 2022;31:1637–46. https://doi.org/10.1007/s00044-022-02951-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmiedlin-Ren P, Edwards DJ, Fitzsimmons ME, et al. Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents. Decreased enterocyte CYP3A4 concentration and mechanism-based inactivation by furanocoumarins. Drug Metab Dispos. 1997;25:1228–33.

CAS  PubMed  Google Scholar 

Goosen TC, Cillié D, Bailey DG, et al. Bergamottin contribution to the grapefruit juice-felodipine interaction and disposition in humans. Clin Pharmacol Ther. 2004;76:607–17. https://doi.org/10.1016/j.clpt.2004.08.019.

Article  CAS  PubMed  Google Scholar 

Edwards DJ, Fitzsimmons ME, Schuetz EG, et al. 6’,7’-Dihydroxybergamottin in grapefruit juice and Seville orange juice: effects on cyclosporine disposition, enterocyte CYP3A4, and P-glycoprotein. Clin Pharmacol Ther. 1999. https://doi.org/10.1016/S0009-9236(99)70102-5.

Filatov M, Reckien W, Peyerimhoff SD, Shaik S. What are the reasons for the kinetic stability of a mixture of H2 and O2? J Phys Chem A. 2000. https://doi.org/10.1021/jp0032208.

Guengerich FP. Mammalian Cytochromes P-450. Vol. I and II. CRC Press; 1987.

Akhtar M, Wright JN. A unified mechanistic view of oxidative reactions catalyzed by P-450 and related iron-containing enzymes. Nat Prod Rep. 1991. https://doi.org/10.1039/NP9910800527.

Rittle J, Green MT. Cytochrome P450 compound I: capture, characterization, and C-H bond activation kinetics. Science. 2010;330:933–7. https://doi.org/10.1126/science.1193478

Article  CAS  PubMed  Google Scholar 

Kim JJ, Roberts DL, Djordjevic S, Wang M, Shea TM, Masters BS. Crystallization studies of NADPH-cytochrome P450 reductase. Methods Enzymol. 1996;272:368–77. https://doi.org/10.1016/s0076-6879(96)72042-6.

Article  CAS  PubMed  Google Scholar 

Cederbaum AI. Molecular mechanisms of the microsomal mixed function oxidases and biological and pathological implications. Redox Biol. 2015;4:60–73.

Article  CAS  PubMed  Google Scholar 

Newcomb M, Le Tadic-Biadatti MH, Chestney DL, Roberts ES, Hollenberg PF. A nonsynchronous concerted mechanism for cytochrome P-450 catalyzed hydroxylation. J Am Chem Soc. 1995. https://doi.org/10.1021/ja00154a008.

Busti AJ. Genetic Polymorphisms of the CYP3A4 Enzyme and Potential Influence on Drug Efficacy and/or Safety [Internet]. 2015. Available from:. https://www.ebmconsult.com/articles/genetic-polymorphisms-cytochrome-P450-CYP3A4-enzyme. [Accessed November 20, 2024]

Guttman Y, Nudel A, Kerem Z. Polymorphism in cytochrome P450 3A4 is ethnicity related. Front Genet. 2019;10:224. https://doi.org/10.3389/fgene.2019.00224.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S. Polymorphic Cytochrome P450 Enzymes (CYPs) and Their Role in Personalized Therapy. PLoS One. 2013;8:e82562. https://doi.org/10.1371/journal.pone.0082562.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pratt VM, Cavallari LH, Fulmer ML, Gaedigk A, Hachad H, Ji Y, et al. CYP3A4 and CYP3A5 Genotyping recommendations. J Mol Diagn. 2023;25:619–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lang J, Vincent L, Chenel M, Ogungbenro K, Galetin A. Impact of hepatic CYP3A4 ontogeny functions on drug-drug interaction risk in pediatric physiologically-based pharmacokinetic/pharmacodynamic modeling: critical literature review and ivabradine case study. Clin Pharmacol Ther. 2021;109:1618–30. https://doi.org/10.1002/cpt.2134

Article  CAS  PubMed  Google Scholar 

Stevens JC. New perspectives on the impact of cytochrome P450 3A expression for pediatric pharmacology. Drug Discov Today. 2006;11:440–5. https://doi.org/10.1016/j.drudis.2006.03.002

Article  CAS  PubMed  Google Scholar 

Lenoir C, Rodieux F, Desmeules JA, Rollason V, Samer CF. Impact of inflammation on cytochromes P450 activity in pediatrics: a systematic review. Clin Pharmacokinet. 2021;60:1537–55. https://doi.org/10.1007/s40262-021-01064-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salerno SN, Carreño FO, Edginton AN, Cohen-Wolkowiez M, Gonzalez D. Leveraging physiologically based pharmacokinetic modeling and experimental data to guide dosing modification of CYP3A-Mediated drug-drug interactions in the pediatric population. Drug Metab Dispos. 2021;49:844–55. https://doi.org/10.1124/dmd.120.000318

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faria J, Solverson M, Faria M, Benoit M, McCormick M. Potential cytochrome P450 Drug-Drug interactions among pediatric patients undergoing tonsillectomy. Otolaryngol Head Neck Surg. 2019;160:145–9. https://doi.org/10.1177/0194599818793850

Article  PubMed  Google Scholar 

Björkman S. Prediction of cytochrome p450-mediated hepatic drug clearance in neonates, infants and children: how accurate are available scaling methods? Clin Pharmacokinet. 2006;45:1–11. https://doi.org/10.2165/00003088-200645010-00001.

Article  PubMed  Google Scholar 

Dwivedi AR, Jaiswal S, Kukkar D, Kumar R, Singh TG, Singh MP, Gaidhane AM, Lakhanpal S, Prasad KN, Kumar B. A decade of pyridine-containing heterocycles in US FDA approved drugs: a medicinal chemistry-based analysis. RSC Med Chem. 2024. https://doi.org/10.1039/d4md00632a.

Yamazoe Y, Goto T, Tohkin M. Versatile applicability of a grid-based CYP3A4 Template to understand the interacting mechanisms with the small-size ligands; part 3 of CYP3A4 Template study. Drug Metab Pharmacokinet. 2020;35:253–65. https://doi.org/10.1016/j.dmpk.2020.01.001.

Article  CAS  PubMed  Google Scholar 

Lee KS, Kim SK. Direct and metabolism-dependent cytochrome P450 inhibition assays for evaluating drug-drug interactions. Clin Ther. 2024. https://doi.org/10.1016/j.clpt.2024.01.001.

Shang S, Li W, Zhou F, Zhao Y, Yu M, Tong L, et al. Cyclosporine-A induced cytotoxicity within HepG2 cells by inhibiting PXR-mediated CYP3A4/CYP3A5/MRP2 pathway. Drug Chem Toxicol. 2024;47:739–47. https://doi.org/10.1080/01480545.2023.2276084

Article  CAS  PubMed  Google Scholar 

Hohmann N, Gliozzi E, Thivaiou D, Bosellini FR, Taviani M, Bianucci G, et al. Dose-dependent induction of CYP3A activity by St. John’s wort alone and in combination with rifampin. Clin Transl Sci. 2024;17:e70007 https://doi.org/10.1111/cts.70007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levy G, Khanna NN, Soda DM, Tsuzuki O, Stern L. Pharmacokinetics of acetaminophen in the human neonate: formation of acetaminophen glucuronide and sulfate in relation to plasma bilirubin concentration and D-glucaric acid excretion. Pediatrics. 1975;55:818–25.

Article  CAS  PubMed  Google Scholar 

FDA Drug Safety Communication: FDA recommends not using lidocaine to treat teething pain and requires new Boxed Warning to address risks, including death, in infants and young children. U.S. FDA. 2014. Accessed November 25, 2024. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-recommends-not-using-lidocaine-treat-teething-pain-and-requires.

Meyers RS, Thackray J, Matson KL, McPherson C, Lubsch L, Hellinga RC, et al. Key potentially inappropriate drugs for children: the KIDs list. J Pediatr Pharm Ther. 2020;25:175–91. https://doi.org/10.5863/1551-6776-25.3.175

留言 (0)

沒有登入
gif