GHRH in diabetes and metabolism

Gregory GA, Robinson TIG, Linklater SE, et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol. 2022;10:741–60. https://doi.org/10.1016/s2213-8587(22)00218-2.

Article  PubMed  Google Scholar 

Oikonomakos IT, Anjana RM, Mohan V, et al. Recent advances in artificial intelligence-assisted endocrinology and diabetes. Explor Endocr Metabolic Disease. 2023;1:16–26. https://doi.org/10.37349/eemd.2023.00004.

Article  Google Scholar 

Oikonomakos IT, Steenblock C, Bornstein SR. Artificial intelligence in diabetes mellitus and endocrine diseases - what can we expect? Nat Rev Endocrinol. 2023;19:375–6. https://doi.org/10.1038/s41574-023-00852-1.

Article  PubMed  Google Scholar 

Sehgal S, De Bock M, Grosman B, et al. Use of a decision support tool and quick start onboarding tool in individuals with type 1 diabetes using advanced automated insulin delivery: a single-arm multi-phase intervention study. BMC Endocr Disord. 2024;24:167. https://doi.org/10.1186/s12902-024-01709-y.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang SCY, Nickel G, Venkatesh KP, et al. AI-based diabetes care: risk prediction models and implementation concerns. NPJ Digit Med. 2024;7:36. https://doi.org/10.1038/s41746-024-01034-7.

Article  PubMed  PubMed Central  Google Scholar 

Bornstein SR, Ludwig B, Steenblock C. Progress in islet transplantation is more important than ever. Nat Rev Endocrinol. 2022;18:389–90. https://doi.org/10.1038/s41574-022-00689-0.

Article  PubMed  PubMed Central  Google Scholar 

Krentz NAJ, Shea LD, Huising MO, et al. Restoring normal islet mass and function in type 1 diabetes through regenerative medicine and tissue engineering. Lancet Diabetes Endocrinol. 2021;9:708–24. https://doi.org/10.1016/S2213-8587(21)00170-4.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Grattoni A, Korbutt G, Tomei AA, et al. Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead. Nat Rev Endocrinol. 2024. https://doi.org/10.1038/s41574-024-01029-0.

Article  PubMed  Google Scholar 

Grimus S, Sarangova V, Welzel PB, et al. Immunoprotection strategies in beta-cell replacement therapy: a closer look at Porcine Islet Xenotransplantation. Adv Sci (Weinh). 2024;11:e2401385. https://doi.org/10.1002/advs.202401385.

Article  PubMed  Google Scholar 

Bornstein SR, Wright JF, Steenblock C. The promising potential of gene therapy for diabetes mellitus. Nat Rev Endocrinol. 2024. https://doi.org/10.1038/s41574-024-01030-7.

Article  PubMed  Google Scholar 

So WY, Han W. Gene therapy targeting key beta cell regulators as a potential intervention for diabetes. EMBO Mol Med. 2024;16:1490–4. https://doi.org/10.1038/s44321-024-00089-z.

Article  PubMed  PubMed Central  Google Scholar 

Reichlin S. Growth hormone content of pituitaries from rats with hypothalamic lesions. Endocrinology. 1961;69:225–. https://doi.org/10.1210/endo-69-2-225.

Article  PubMed  CAS  Google Scholar 

Schally AV, Arimura A, Bowers CY, et al. Purification of hypothalamic releasing hormones of human origin. J Clin Endocrinol Metab. 1970;31:291–300. https://doi.org/10.1210/jcem-31-3-291.

Article  PubMed  CAS  Google Scholar 

Schally AV, Steelman SL, Bowers CY. Effect of hypothalamic extracts on release of growth hormone in Vitro. Proc Soc Exp Biol Med. 1965;119:208. https://doi.org/10.3181/00379727-119-30138.

Article  PubMed  CAS  Google Scholar 

Guillemin R, Brazeau P, Bohlen P, et al. Growth-hormone releasing-factor from a human pancreatic tumor that caused acromegaly. Science. 1982;218:585–7. https://doi.org/10.1126/science.6812220.

Article  PubMed  CAS  Google Scholar 

Rivier J, Spiess J, Thorner M, et al. Characterization of a growth hormone-releasing factor from a human pancreatic-islet tumor. Nature. 1982;300:276–8. https://doi.org/10.1038/300276a0.

Article  PubMed  CAS  Google Scholar 

Matsubara S, Sato M, Mizobuchi M, et al. Differential gene expression of growth hormone (GH)-releasing hormone (GRH) and GRH receptor in various rat tissues. Endocrinology. 1995;136:4147–50. https://doi.org/10.1210/endo.136.9.7649123.

Article  PubMed  CAS  Google Scholar 

Zhou F, Zhang H, Cong Z, et al. Structural basis for activation of the growth hormone-releasing hormone receptor. Nat Commun. 2020;11:5205. https://doi.org/10.1038/s41467-020-18945-0.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Steyn FJ, Tolle V, Chen C, et al. Neuroendocrine regulation of growth hormone secretion. Compr Physiol. 2016;6:687–735. https://doi.org/10.1002/cphy.c150002.

Article  PubMed  Google Scholar 

Cozma D, Siatra P, Bornstein SR, et al. Sensitivity of the neuroendocrine stress Axis in Metabolic diseases. Horm Metab Res. 2024;56:65–77. https://doi.org/10.1055/a-2201-6641.

Article  PubMed  CAS  Google Scholar 

Granata R. Peripheral activities of growth hormone-releasing hormone. J Endocrinol Invest. 2016;39:721–7. https://doi.org/10.1007/s40618-016-0440-x.

Article  PubMed  CAS  Google Scholar 

Kiaris H, Chatzistamou I, Papavassiliou AG, et al. Growth hormone-releasing hormone: not only a neurohormone. Trends Endocrinol Metab. 2011;22:311–7. https://doi.org/10.1016/j.tem.2011.03.006.

Article  PubMed  CAS  Google Scholar 

Schally AV, Zhang X, Cai R, et al. Actions and potential therapeutic applications of growth hormone-releasing hormone agonists. Endocrinology. 2019;160:1600–12. https://doi.org/10.1210/en.2019-00111.

Article  PubMed  CAS  Google Scholar 

Frohman LA, Kineman RD. Growth hormone-releasing hormone and pituitary development, hyperplasia and tumorigenesis. Trends Endocrinol Metab. 2002;13:299–303. https://doi.org/10.1016/s1043-2760(02)00613-6.

Article  PubMed  CAS  Google Scholar 

Velez EJ, Unniappan S. A comparative update on the neuroendocrine regulation of growth hormone in vertebrates. Front Endocrinol (Lausanne). 2020;11:614981. https://doi.org/10.3389/fendo.2020.614981.

Article  PubMed  Google Scholar 

Jaffe CA, Ocampo-Lim B, Guo WS, et al. Regulatory mechanisms of growth hormone secretion are sexually dimorphic. J Clin Invest. 1998;102:153–64. https://doi.org/10.1172/Jci2908.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Berryman DE, List EO. Growth Hormone’s Effect on Adipose Tissue: Quality versus Quantity. Int J Mol Sci. 2017;18. https://doi.org/10.3390/ijms18081621.

Frenette E, Lui A, Cao M. Neurohormones and Sleep. Vitamins and Hormones: Sleep Hormones, Vol 89. 2012; 89: 1–17. https://doi.org/10.1016/B978-0-12-394623-2.00001-9

Ho KY, Veldhuis JD, Johnson ML, et al. Fasting enhances growth-hormone secretion and amplifies the complex rhythms of growth-hormone secretion in Man. J Clin Invest. 1988;81:968–75. https://doi.org/10.1172/Jci113450.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lu M, Flanagan JU, Langley RJ, et al. Targeting growth hormone function: strategies and therapeutic applications. Signal Transduct Target Ther. 2019;4:3. https://doi.org/10.1038/s41392-019-0036-y.

Article  PubMed  PubMed Central  Google Scholar 

Al-Samerria S, Radovick S. The role of insulin-like growth Factor-1 (IGF-1) in the control of neuroendocrine regulation of growth. Cells. 2021;10. https://doi.org/10.3390/cells10102664.

Ranke MB, Wit JM. Growth hormone - past, present and future. Nat Rev Endocrinol. 2018;14:285–300.

留言 (0)

沒有登入
gif