Central and peripheral regulation of the GH/IGF-1 axis: GHRH and beyond

Steyn FJ, Tolle V, Chen C, Epelbaum J. Neuroendocrine regulation of growth hormone secretion. Compr Physiol. 2016;6:687–735.

Article  PubMed  Google Scholar 

Ranke MB, Wit JM. Growth hormone-past, present and future. Nat Rev Endocrinol. 2018;14:285–300.

Article  PubMed  Google Scholar 

Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev. 1998;19:717–97.

PubMed  Google Scholar 

Waters MJ, Rowlinson SW, Clarkson RW, Chen CM, Lobie PE, Norstedt G, et al. Signal transduction by the growth hormone receptor. Proc Soc Exp Biol Med. 1994;206:216–20.

Article  PubMed  Google Scholar 

Kopchick JJ, Andry JM. Growth hormone (GH), GH receptor, and signal transduction. Mol Genet Metab. 2000;71:293–314.

Article  PubMed  Google Scholar 

Bergan-Roller HE, Sheridan MA. The growth hormone signaling system: Insights into coordinating the anabolic and catabolic actions of growth hormone. Gen Comp Endocrinol. 2018;258:119–33. https://doi.org/10.1016/j.ygcen.2017.07.028.

Article  PubMed  Google Scholar 

Lanning NJ, Carter-Su C. Recent advances in growth hormone signaling. Rev Endocr Metab Disord. 2006;7:225–35.

Article  PubMed  Google Scholar 

Reindl KM, Kittilson JD, Bergan HE, Sheridan MA. Growth hormone-stimulated insulin-like growth factor-1 expression in rainbow trout (oncorhynchus mykiss) hepatocytes is mediated by ERK, PI3K-AKT, and JAK-STAT. Am J Physiol - Regul Integr Comp Physiol. 2011;301:236–43.

Article  Google Scholar 

Gong Y, Luo S, Fan P, Zhu H, Li Y, Huang W. Growth hormone activates PI3K/Akt signaling and inhibits ROS accumulation and apoptosis in granulosa cells of patients with polycystic ovary syndrome. Reprod Biol Endocrinol. 2020;18:1–12.

Article  Google Scholar 

Palabiyik O, Tastekin E, Doganlar ZB, Tayfur P, Dogan A, Vardar SA. Alteration in cardiac PI3K/Akt/mTOR and ERK signaling pathways with the use of growth hormone and swimming, and the roles of miR21 and miR133. Biomed Reports. 2019;10:97–106.

Google Scholar 

Lin-Su K, Wajnrajch MP. Growth Hormone Releasing Hormone (GHRH) and the GHRH Receptor. Rev Endocr Metab Disord. 2002;3:313–23.

Article  PubMed  Google Scholar 

Müller EE, Locatelli V, Cocchi D. Neuroendocrine control of growth hormone secretion. Physiol Rev. 1999;79:511–607.

Article  PubMed  Google Scholar 

Petersenn S, Schulte HM. Structure and function of the growth-hormone-releasing hormone receptor. Vitam Horm. 2000;59:35–69.

Article  PubMed  Google Scholar 

Frohman LA, Kineman RD, Kamegai J, Park S, Teixeira LT, Coschigano KT, et al. Secretagogues and the somatotrope: signaling and proliferation. Recent Prog Horm Res. 2000;55:261–9.

Google Scholar 

Theodoropoulou M, Stalla GK. Somatostatin receptors: From signaling to clinical practice. Front Neuroendocrinol. 2013;34:228–52. https://doi.org/10.1016/j.yfrne.2013.07.005.

Article  PubMed  Google Scholar 

Bizzi MF, Bolger GB, Korbonits M, Ribeiro-Oliveira A Jr. Phosphodiesterases and cAMP pathway in pituitary diseases. Frontiers in endocrinology. 2019;10:141. https://doi.org/10.3389/fendo.2019.00141.

Article  PubMed  PubMed Central  Google Scholar 

Eigler T. Ben-Shlomo A. Somatostatin system: Molecular mechanisms regulating anterior pituitary hormones. J Mol Endocrinol; 2014. p. 53.

Google Scholar 

del Sosa LV, Picech F, Perez P, Gutierrez S, Leal RB, De Paul A, et al. Regulation of FGF2-induced proliferation by inhibitory GPCR in normal pituitary cells. Front Endocrinol (Lausanne). 2023;14:1–13.

Article  Google Scholar 

Peverelli E, Busnelli M, Vitali E, Giardino E, Galés C, Lania AG, Beck-Peccoz P, Chini B, Mantovani G, Spada A. Specific roles of Gi protein family members revealed by dissecting SST5 coupling in human pituitary cells. J Cell Sci. 2013;126(Pt 2):638–44. https://doi.org/10.1242/jcs.116434.

Article  PubMed  Google Scholar 

Danila DC, Haidar JNS, Zhang X, Katznelson L, Culler MD, Klibanski A. Somatostatin receptor-specific analogs: Effects on cell proliferation and growth hormone secretion in human somatotroph tumors. J Clin Endocrinol Metab. 2001;86:2976–81.

PubMed  Google Scholar 

Peterfreund RA, Vale WW. Somatostatin analogs inhibit somatostatin secretion from cultured hypothalamus cells. Neuroendocrinology. 1984;39:397–402.

Article  PubMed  Google Scholar 

Glenn KC. Regulation of release of somatotropin from in vitro cultures of bovine and porcine pituitary cells. Endocrinology. 1986;118:2450–7.

Article  PubMed  Google Scholar 

Lapp CA, Tyler JM, Lee YS, Stachura ME. Autocrine-paracrine inhibition of growth hormone and prolactin production by GH3 cell-conditioned medium. In Vitro Cell Dev Biol. 1989;25:528–34.

Article  PubMed  Google Scholar 

Rosenthal SM, Silverman BL, Wehrenberg WB. Exogenous growth hormone inhibits bovine but not murine pituitary growth hormone secretion in vitro: evidence for a direct feedback of growth hormone on the pituitary. Neuroendocrinology. 1991;53:597–600.

Article  PubMed  Google Scholar 

Lumpkin MD, Samson WK, McCann SM. Effects of intraventricular growth hormone-releasing factor on growth hormone release: further evidence for ultrashort loop feedback. Endocrinology. 1985;116:2070–4.

Article  PubMed  Google Scholar 

Berelowitz M, Firestone SL, Frohman LA. Effects of growth hormone excess and deficiency on hypothalamic somatostatin content and release and on tissue somatostatin distribution. Endocrinology. 1981;109:714–9.

Article  PubMed  Google Scholar 

Kanatsuka A, Makino H, Matsushima Y, Osegawa M, Yamamoto M, Kumagai A. Effect of hypophysectomy and growth hormone administration on somatostatin content in the rat hypothalamus. Neuroendocrinology. 1979;29:186–90.

Article  PubMed  Google Scholar 

Bertherat J, Timsit J, Bluet-Pajot MT, Mercadier JJ, Gourdji D, Kordon C, et al. Chronic growth hormone (GH) hypersecretion induces reciprocal and reversible changes in mRNA levels from hypothalamic GH-releasing hormone and somatostatin neurons in the rat. J Clin Invest. 1993;91:1783–91.

Article  PubMed  PubMed Central  Google Scholar 

Chomczynski P, Downs TR, Frohman LA. Feedback regulation of growth hormone (GH)-releasing hormone gene expression by GH in rat hypothalamus. Mol Endocrinol. 1988;2:236–41.

Article  PubMed  Google Scholar 

Pellegrini E, Bluet-Pajot MT, Mounier F, Bennett P, Kordon C, Epelbaum J. Central administration of a growth hormone (GH) receptor mRNA antisense increases GH pulsatility and decreases hypothalamic somatostatin expression in rats. J Neurosci Off J Soc Neurosci. 1996;16:8140–8.

Article  Google Scholar 

Morita S, Yamashita S, Melmed S. Insulin-like growth factor I action on rat anterior pituitary cells: effects of intracellular messengers on growth hormone secretion and messenger ribonucleic acid levels. Endocrinology. 1987;121:2000–6.

Article  PubMed  Google Scholar 

Yamasaki H, Prager D, Gebremedhin S, Melmed S. Insulin-like growth factor-I (IGF-I) attenuation of growth hormone is enhanced by overexpression of pituitary IGF-I receptors. Mol Endocrinol. 1991;5:890–6.

Article  PubMed  Google Scholar 

Yamashita S, Ong J, Melmed S. Regulation of human growth hormone gene expression by insulin-like growth factor I in transfected cells. J Biol Chem. 1987;262:13254–7.

Article  PubMed  Google Scholar 

Gahete MD, Córdoba-Chacón J, Anadumaka CV, Lin Q, Brüning JC, Kahn CR, et al. Elevated GH/IGF-I, due to somatotrope-specific loss of both IGF-I and insulin receptors, alters glucose homeostasis and insulin sensitivity in a diet-dependent manner. Endocrinology. 2011;152:4825–37.

Article  PubMed  PubMed Central  Google Scholar 

Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

Article  PubMed  Google Scholar 

Khatib N, Gaidhane S, Gaidhane AM, Khatib M, Simkhada P, Gode D, et al. Ghrelin: ghrelin as a regulatory Peptide in growth hormone secretion. J Clin Diagn Res. 2014;8:MC13-7.

PubMed  PubMed Central  Google Scholar 

van der Lely AJ, Tschöp M, Heiman ML, Ghigo E. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev. 2004;25:426–57.

Article  PubMed  Google Scholar 

Ghigo E, Broglio F, Arvat E, Maccario M, Papotti M, Muccioli G. Ghrelin: more than a natu

留言 (0)

沒有登入
gif