Kwon AH, Marshall ZJ, Nabzdyk CS. Why anesthesiologists could and should become the next leaders in innovative medical entrepreneurism. Anesth Analg. 2017;124(3):998–1004.
Lienhart A, Auroy Y, Péquignot F, Benhamou D, Warszawski J, Bovet M, Jougla E. Survey of anesthesia-related mortality in France. Anesthesiology. 2006. https://doi.org/10.1097/00000542-200612000-00008.
Kadry B, Feaster WW, Macario A, Ehrenfeld JM. Anesthesia information management systems: past, present, and future of anesthesia records. Mt Sinai J Med. 2012;79(1):154–65.
Deng F, Hickey JV. Anesthesia information management systems: an underutilized tool for outcomes research. AANA J. 2015;83(3):189–95.
Murphy PJ. Measuring and recording outcome. Br J Anaesth. 2012;109(1):92–8.
Article CAS PubMed Google Scholar
Al G. Hands-on machine learning with scikit-learn, keras, and tensorflow concepts, tools, and techniques to build intelligent systems. 2nd ed. Sebastopoled: O’Reilly Media, Inc.; 2019.
Briganti G. On the use of bayesian artificial intelligence for hypothesis generation in psychiatry. Psychiatr Danub. 2022;34(8):201–6.
Iyer PU, Iyer KS. Research in pediatric cardiac anesthesia and intensive care in low- and middle- income countries and low resource settings: challenges and opportunities. Ann Pediatr Cardiol. 2021;14(3):356–8.
Article PubMed PubMed Central Google Scholar
Cvetkovic M. Challenges in pediatric cardiac anesthesia in developing countries. Front Pediatr. 2018. https://doi.org/10.3389/fped.2018.00254.
Article PubMed PubMed Central Google Scholar
Li B, Zhang R, Zhang M, Zheng J. Current anesthesia practices of pediatric cardiac surgeries in tertiary maternity and children’s hospitals in China: a national survey. J Cardiothorac Vasc Anesth. 2023;37(7):1213–22.
Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology. 2020;132(2):379–94.
Jeffries HE, Soto-Campos G, Katch A, Gall C, Rice TB, Wetzel R. Pediatric index of cardiac surgical intensive care mortality risk score for pediatric cardiac critical care*. Pediatr Crit Care Med. 2015. https://doi.org/10.1097/PCC.0000000000000489.
Kang AR, Lee J, Jung W, Lee M, Park SY, Woo J. Development of a prediction model for hypotension after induction of anesthesia using machine learning. PLoS ONE. 2020;15(4):e0231172.
Article CAS PubMed PubMed Central Google Scholar
Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT press; 2016.
Despotis G, Avidan M, Eby C. Prediction and management of bleeding in cardiac surgery. J Thromb Haemost. 2009;7(1):111–7.
Article CAS PubMed Google Scholar
Jenkins KJ, Gauvreau K, Newburger JW, Spray TL, Moller JH, Iezzoni LI. Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg. 2002;123(1):110–8.
Willems A, Van Lerberghe C, Gonsette K, De Villé A, Melot C, Hardy JF. The indication for perioperative red blood cell transfusions is a predictive risk factor for severe postoperative morbidity and mortality in children undergoing cardiac surgery. Eur J Cardiothorac Surg. 2014;45(6):1050–7.
Székely A, Sápi E, Király L, Szatmári A, Dinya E. Intraoperative and postoperative risk factors for prolonged mechanical ventilation after pediatric cardiac surgery. Paediatr Anaesth. 2006;16(11):1166–75.
Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, Devarajan P, Parikh CR, Goldstein SL. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care. 2007. https://doi.org/10.1186/cc6089.
Article PubMed PubMed Central Google Scholar
GaD VR, Fred L. Python 3 reference manual. California: CreateSpace; 2009.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12(85):2825–30.
Kubben P, Dumontier M, Dekker A. Fundamentals of clinical data science. Berlin: Springer Nature; 2019.
R Development Core Team. R: a language and environment for statistical computing. 362nd ed. Vienna: R Foundation for Statistical Computing; 2023.
McKinney W (2010) Data structures for statistical computing in python. In: McKinney W (ed) Proceedings of the 9th Python in Science Conference. Austin, TX, 2010
Price-Whelan AM, Sipőcz B, Günther H, Lim P, Crawford S, Conseil S. The astropy project: building an open-science project and status of the v2. 0 core package. Astron J. 2018. https://doi.org/10.3847/1538-3881/aabc4f.
Bengfort B, Bilbro R. Yellowbrick: visualizing the scikit-learn model selection process. J Open Sour Softw. 2019;4(35):1075.
Charles R, Harris K, Jarrod M, van der Walt SJ, Ralf G, Pauli V, David C, Eric W, Julian T, Sebastian B, Nathaniel JS, Robert K, Matti P, Stephan H, van Kerkwijk MH, Matthew B, Allan H, Mark W, Pearu P, Gérard-Marchant P, Kevin S, Tyler R, Warren W, Hameer A, Christoph G, Travis EO. Array programming with NumPy. Nature. 2020. https://doi.org/10.1038/s41586-020-2649-2.
Phillips PJ, Hahn CA, Fontana PC, Broniatowski DA, Przybocki MA. Four principles of explainable artificial intelligence. Maryland: Gaithersburg; 2020.
Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE. 2015;10(3):e0118432.
Article PubMed PubMed Central Google Scholar
Zeng X, An J, Lin R, Dong C, Zheng A, Li J. Prediction of complications after paediatric cardiac surgery. Eur J Cardiothorac Surg. 2020;57(2):350–8.
留言 (0)