Pediatric cardiac surgery: machine learning models for postoperative complication prediction

Kwon AH, Marshall ZJ, Nabzdyk CS. Why anesthesiologists could and should become the next leaders in innovative medical entrepreneurism. Anesth Analg. 2017;124(3):998–1004.

Article  PubMed  Google Scholar 

Lienhart A, Auroy Y, Péquignot F, Benhamou D, Warszawski J, Bovet M, Jougla E. Survey of anesthesia-related mortality in France. Anesthesiology. 2006. https://doi.org/10.1097/00000542-200612000-00008.

Article  PubMed  Google Scholar 

Kadry B, Feaster WW, Macario A, Ehrenfeld JM. Anesthesia information management systems: past, present, and future of anesthesia records. Mt Sinai J Med. 2012;79(1):154–65.

Article  PubMed  Google Scholar 

Deng F, Hickey JV. Anesthesia information management systems: an underutilized tool for outcomes research. AANA J. 2015;83(3):189–95.

PubMed  Google Scholar 

Murphy PJ. Measuring and recording outcome. Br J Anaesth. 2012;109(1):92–8.

Article  CAS  PubMed  Google Scholar 

Al G. Hands-on machine learning with scikit-learn, keras, and tensorflow concepts, tools, and techniques to build intelligent systems. 2nd ed. Sebastopoled: O’Reilly Media, Inc.; 2019.

Google Scholar 

Briganti G. On the use of bayesian artificial intelligence for hypothesis generation in psychiatry. Psychiatr Danub. 2022;34(8):201–6.

PubMed  Google Scholar 

Iyer PU, Iyer KS. Research in pediatric cardiac anesthesia and intensive care in low- and middle- income countries and low resource settings: challenges and opportunities. Ann Pediatr Cardiol. 2021;14(3):356–8.

Article  PubMed  PubMed Central  Google Scholar 

Cvetkovic M. Challenges in pediatric cardiac anesthesia in developing countries. Front Pediatr. 2018. https://doi.org/10.3389/fped.2018.00254.

Article  PubMed  PubMed Central  Google Scholar 

Li B, Zhang R, Zhang M, Zheng J. Current anesthesia practices of pediatric cardiac surgeries in tertiary maternity and children’s hospitals in China: a national survey. J Cardiothorac Vasc Anesth. 2023;37(7):1213–22.

Article  PubMed  Google Scholar 

Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology. 2020;132(2):379–94.

Article  PubMed  Google Scholar 

Jeffries HE, Soto-Campos G, Katch A, Gall C, Rice TB, Wetzel R. Pediatric index of cardiac surgical intensive care mortality risk score for pediatric cardiac critical care*. Pediatr Crit Care Med. 2015. https://doi.org/10.1097/PCC.0000000000000489.

Article  PubMed  Google Scholar 

Kang AR, Lee J, Jung W, Lee M, Park SY, Woo J. Development of a prediction model for hypotension after induction of anesthesia using machine learning. PLoS ONE. 2020;15(4):e0231172.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT press; 2016.

Google Scholar 

Despotis G, Avidan M, Eby C. Prediction and management of bleeding in cardiac surgery. J Thromb Haemost. 2009;7(1):111–7.

Article  CAS  PubMed  Google Scholar 

Jenkins KJ, Gauvreau K, Newburger JW, Spray TL, Moller JH, Iezzoni LI. Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg. 2002;123(1):110–8.

Article  PubMed  Google Scholar 

Willems A, Van Lerberghe C, Gonsette K, De Villé A, Melot C, Hardy JF. The indication for perioperative red blood cell transfusions is a predictive risk factor for severe postoperative morbidity and mortality in children undergoing cardiac surgery. Eur J Cardiothorac Surg. 2014;45(6):1050–7.

Article  PubMed  Google Scholar 

Székely A, Sápi E, Király L, Szatmári A, Dinya E. Intraoperative and postoperative risk factors for prolonged mechanical ventilation after pediatric cardiac surgery. Paediatr Anaesth. 2006;16(11):1166–75.

Article  PubMed  Google Scholar 

Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, Devarajan P, Parikh CR, Goldstein SL. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care. 2007. https://doi.org/10.1186/cc6089.

Article  PubMed  PubMed Central  Google Scholar 

GaD VR, Fred L. Python 3 reference manual. California: CreateSpace; 2009.

Google Scholar 

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12(85):2825–30.

Google Scholar 

Kubben P, Dumontier M, Dekker A. Fundamentals of clinical data science. Berlin: Springer Nature; 2019.

Book  Google Scholar 

R Development Core Team. R: a language and environment for statistical computing. 362nd ed. Vienna: R Foundation for Statistical Computing; 2023.

Google Scholar 

McKinney W (2010) Data structures for statistical computing in python. In: McKinney W (ed) Proceedings of the 9th Python in Science Conference. Austin, TX, 2010

Price-Whelan AM, Sipőcz B, Günther H, Lim P, Crawford S, Conseil S. The astropy project: building an open-science project and status of the v2. 0 core package. Astron J. 2018. https://doi.org/10.3847/1538-3881/aabc4f.

Article  Google Scholar 

Bengfort B, Bilbro R. Yellowbrick: visualizing the scikit-learn model selection process. J Open Sour Softw. 2019;4(35):1075.

Article  Google Scholar 

Charles R, Harris K, Jarrod M, van der Walt SJ, Ralf G, Pauli V, David C, Eric W, Julian T, Sebastian B, Nathaniel JS, Robert K, Matti P, Stephan H, van Kerkwijk MH, Matthew B, Allan H, Mark W, Pearu P, Gérard-Marchant P, Kevin S, Tyler R, Warren W, Hameer A, Christoph G, Travis EO. Array programming with NumPy. Nature. 2020. https://doi.org/10.1038/s41586-020-2649-2.

Article  Google Scholar 

Phillips PJ, Hahn CA, Fontana PC, Broniatowski DA, Przybocki MA. Four principles of explainable artificial intelligence. Maryland: Gaithersburg; 2020.

Google Scholar 

Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE. 2015;10(3):e0118432.

Article  PubMed  PubMed Central  Google Scholar 

Zeng X, An J, Lin R, Dong C, Zheng A, Li J. Prediction of complications after paediatric cardiac surgery. Eur J Cardiothorac Surg. 2020;57(2):350–8.

PubMed  Google Scholar 

留言 (0)

沒有登入
gif