MTBVAC induces superior antibody titers and IgG avidity compared to BCG vaccination in non-human primates

2022, Global Tuberculosis Report 2022, World Health Organization (WHO).

Vynnycky, E. & Fine, P. E. The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection. Epidemiol Infect. 119, 183–201 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brosch, R. et al. Genome plasticity of BCG and impact on vaccine efficacy. Proceedings of the National Academy of Sciences 104, 5596–5601 (2007).

Article  CAS  Google Scholar 

Fine, P. E. Variation in protection by BCG: implications of and for heterologous immunity. Lancet 346, 1339–1345 (1995).

Article  CAS  PubMed  Google Scholar 

Roy, A. et al. Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. The BMJ 349, g4643 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mangtani, P. et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin. Infect. Dis. 58, 470–480 (2014).

Article  PubMed  Google Scholar 

Hedhli, D. et al. M.tuberculosis mutants lacking oxygenated mycolates show increased immunogenicity and protective efficacy as compared to M. bovis BCG vaccine in an experimental mouse model. PLoS One 8, e76442 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leunda, A. et al. Novel GMO-based vaccines against tuberculosis: state of the art and biosafety considerations. Vaccines (Basel) 2, 463–499 (2014).

Article  CAS  PubMed  Google Scholar 

Aceves-Sánchez, M. J. et al. Vaccination with BCGΔBCG1419c protects against pulmonary and extrapulmonary TB and is safer than BCG. Sci. Rep. 11, 12417 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Sarno, A., Bitencourt, J., Queiroz, A. & Arruda, S. In silico comparisons of lipid-related genes between Mycobacterium tuberculosis and BCG vaccine strains. Genet Mol. Biol. 44, e20210024 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzalo-Asensio, J., Marinova, D., Martin, C. & Aguilo, N. MTBVAC: attenuating the Human Pathogen of Tuberculosis (TB) Toward a Promising Vaccine against the TB Epidemic. Front Immunol. 8, 1803 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Arbues, A. et al. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine 31, 4867–4873 (2013).

Article  CAS  PubMed  Google Scholar 

Forrellad, M. A. et al. Virulence factors of the Mycobacterium tuberculosis complex. Virulence 4, 3–66 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Tameris, M. et al. Live-attenuated Mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults and neonates: a randomised controlled, double-blind dose-escalation trial. Lancet Respir Med. 7, 757–770 (2019).

Article  CAS  PubMed  Google Scholar 

Broset, E. et al. Engineering a new vaccine platform for heterologous antigen delivery in live-attenuated Mycobacterium tuberculosis. Comput Struct Biotechnol J 19, 4273–4283 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diaz, C. et al. Comparative Metabolomics between Mycobacterium tuberculosis and the MTBVAC Vaccine Candidate. ACS Infect. Dis. 5, 1317–1326 (2019).

Article  CAS  PubMed  Google Scholar 

Aguilo, N. et al. MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice. Tuberculosis (Edinb) 96, 71–74 (2016).

Article  CAS  PubMed  Google Scholar 

Clark, S. et al. Revaccination of Guinea pigs with the live attenuated Mycobacterium tuberculosis vaccine MTBVAC improves BCG’s protection against tuberculosis. J Infect. Dis. 216, 525–533 (2017).

Article  CAS  PubMed  Google Scholar 

Broset, E. et al. MTBVAC-based TB-HIV vaccine is safe, elicits HIV-T cell responses, and protects against Mycobacterium tuberculosis in mice. Mol. Ther Methods Clin. Dev 13, 253–264 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

White, A. D. et al. MTBVAC vaccination protects rhesus macaques against aerosol challenge with M. tuberculosis and induces immune signatures analogous to those observed in clinical studies. npj Vaccines 6, 4 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spertini, F. et al. Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial. Lancet Respir Med. 3, 953–962 (2015).

Article  CAS  PubMed  Google Scholar 

Tanner, R., Villarreal-Ramos, B., Vordermeier, H. M. & McShane, H., The Humoral Immune Response to BCG Vaccination. Frontiers in Immunology, 10(1317) (2019).

Li, H. & Javid, B. Antibodies and tuberculosis: finally coming of age? Nature Reviews Immunology 18, 591–596 (2018).

Article  CAS  PubMed  Google Scholar 

de Vallière, S., Abate, G., Blazevic, A., Heuertz, R. M. & Hoft, D. F. Enhancement of innate and cell-mediated immunity by antimycobacterial antibodies. Infect. Immun. 73, 6711–6720 (2005).

Article  PubMed  PubMed Central  Google Scholar 

Fletcher, H. A. et al. T-cell activation is an immune correlate of risk in BCG vaccinated infants. Nat. Commun. 7, 11290 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tait, D. R. et al. Final Analysis of a Trial of M72/AS01E Vaccine to Prevent Tuberculosis. New England Journal of Medicine 381, 2429–2439 (2019).

Article  CAS  PubMed  Google Scholar 

Renshaw, P. S. et al. Conclusive evidence that the major t-cell antigens of themycobacterium tuberculosis complex esat-6 and cfp-10 form a tight, 1: 1 complex and characterization of the structural properties of esat-6, cfp-10, and the esat-6· cfp-10 complex: Implications for pathogenesis and virulence. Journal of Biological Chemistry 277, 21598–21603 (2002).

Article  CAS  PubMed  Google Scholar 

Aguilo, N. et al. Respiratory Immunization With a Whole Cell Inactivated Vaccine Induces Functional Mucosal Immunoglobulins Against Tuberculosis in Mice and Non-human Primates, Frontiers in Microbiology, 11 2020

Dijkman, K. et al. Pulmonary MTBVAC vaccination induces immune signatures previously correlated with prevention of tuberculosis infection. Cell Rep. Med. 2, 100187 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su, F., Patel, G. B., Hu, S. & Chen, W. Induction of mucosal immunity through systemic immunization: Phantom or reality? Hum Vaccin Immunother 12, 1070–1079 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Dijkman, K. et al. Pulmonary MTBVAC vaccination induces immune signatures previously correlated with prevention of tuberculosis infection, Cell Reports Medicine, 2.2021

Oostindie, S. C., Lazar, G. A., Schuurman, J. & Parren, P. W. H. I. Avidity in antibody effector functions and biotherapeutic drug design. Nature Reviews Drug Discovery 21, 715–735 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakagama, Y. et al. Antibody avidity maturation following recovery from infection or the booster vaccination grants breadth of SARS-CoV-2 neutralizing capacity. J Infect. Dis. 227, 780–787 (2023).

Article  CAS  PubMed  Google Scholar 

Goldblatt, D., Vaz, A. R. & Miller, E. Antibody avidity as a surrogate marker of successful priming by Haemophilus influenzae type b conjugate vaccines fo

留言 (0)

沒有登入
gif