Inhibition of SARS-CoV-2 replication in cells by G-quadruplex ligands

Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perrone R, Nadai M, Frasson I, Poe JA, Butovskaya E, Smithgall TE, et al. A dynamic G-quadruplex region regulates the HIV-1 long terminal repeat promoter. J Med Chem. 2013;56:6521–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tauber D, Tauber G, Parker R. Mechanisms and regulation of RNA condensation in RNP granule formation. Trends Biochem Sci. 2020;45:764–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manfredonia I, Nithin C, Ponce-Salvatierra A, Ghosh P, Wirecki TK, Marinus T, et al. Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements. Nucleic Acids Res. 2020;48:12436–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huppert JL, Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007;35:406–13.

Article  CAS  PubMed  Google Scholar 

Murat P, Zhong J, Lekieffre L, Cowieson NP, Clancy JL, Preiss T, et al. G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation. Nat Chem Biol. 2014;10:358–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang SR, Min YQ, Wang JQ, Liu CX, Fu BS, Wu F, et al. A highly conserved G-rich consensus sequence in hepatitis C virus core gene represents a new anti-hepatitis C target. Sci Adv. 2016;2:e1501535.

Article  PubMed  PubMed Central  Google Scholar 

Artusi S, Nadai M, Perrone R, Biasolo MA, Palù G, Flamand L, et al. The Herpes Simplex Virus-1 genome contains multiple clusters of repeated G-quadruplex: Implications for the antiviral activity of a G-quadruplex ligand. Antiviral Res. 2015;118:123–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harris LM, Merrick CJ. G-quadruplexes in pathogens: a common route to virulence control? PLoS Pathog. 2015;11:e1004562.

Article  PubMed  PubMed Central  Google Scholar 

Madireddy A, Purushothaman P, Loosbroock CP, Robertson ES, Schildkraut CL, Verma SC. G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV. Nucleic Acids Res. 2016;44:3675–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gilbert-Girard S, Gravel A, Artusi S, Richter SN, Wallaschek N, Kaufer BB, et al. Stabilization of telomere G-quadruplexes interferes with human herpesvirus 6A chromosomal integration. J Virol. 2017;91:e00402-17.

Article  PubMed  PubMed Central  Google Scholar 

Saranathan N, Vivekanandan P. G-quadruplexes: more than just a kink in microbial genomes. Trends Microbiol. 2019;27:148–63.

Article  CAS  PubMed  Google Scholar 

Ji D, Juhas M, Tsang CM, Kwok CK, Li Y, Zhang Y. Discovery of G-quadruplex-forming sequences in SARS-CoV-2. Brief Bioinform. 2021;22:1150–60.

Article  CAS  PubMed  Google Scholar 

Mukherjee SK, Knop JM, Winter R. Modulation of the conformational space of SARS-CoV-2 RNA quadruplex RG-1 by cellular components and the amyloidogenic peptides α-synuclein and hIAPP. Chemistry. 2022;28:e202104182.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maiti AK. Identification of G-quadruplex DNA sequences in SARS-CoV2. Immunogenetics. 2022;74:455–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao C, Qin G, Niu J, Wang Z, Wang C, Ren J, et al. Targeting RNA G-quadruplex in SARS-CoV-2: a promising therapeutic target for COVID-19? Angew Chem Int Ed Engl. 2021;60:432–8.

Article  CAS  PubMed  Google Scholar 

Tong Q, Liu G, Sang X, Zhu X, Fu X, Dou C, et al. Targeting RNA G-quadruplex with repurposed drugs blocks SARS-CoV-2 entry. PLoS Pathog. 2023;19:e1011131.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Razzaq M, Han JH, Ravichandran S, Kim J, Bae JY, Park MS, et al. Stabilization of RNA G-quadruplexes in the SARS-CoV-2 genome inhibits viral infection via translational suppression. Arch Pharm Res. 2023;46:598–615.

Article  CAS  PubMed  Google Scholar 

Zhai LY, Su AM, Liu JF, Zhao JJ, Xi XG, Hou XM. Recent advances in applying G-quadruplex for SARS-CoV-2 targeting and diagnosis: A review. Int J Biol Macromol. 2022;221:1476–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oliva R, Mukherjee S, Manisegaran M, Campanile M, Del Vecchio P, Petraccone L, et al. Binding oroperties of RNA quadruplex of SARS-CoV-2 to berberine compared to telomeric DNA quadruplex. Int J Mol Sci. 2022;23:5690.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moraca F, Marzano S, D’Amico F, Lupia A, Di Fonzo S, Vertecchi E, et al. Ligand-based drug repurposing strategy identified SARS-CoV-2 RNA G-quadruplex binders. Chem Commun (Camb). 2022;58:11913–6.

Article  CAS  PubMed  Google Scholar 

Ji D, Juhas M, Tsang CM, Kwok CK, Li Y, Zhang Y Discovery of G-quadruplex-forming sequences in SARS-CoV-2. Brief Bioinform. 2020;bbaa114

Panera N, Tozzi AE, Alisi A. The G-quadruplex/helicase world as a potential antiviral approach against COVID-19. Drugs. 2020;80:941–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui H, Zhang L. G-quadruplexes are present in human Coronaviruses including SARS-CoV-2. Front Microbiol. 2020;11:567317.

Article  PubMed  PubMed Central  Google Scholar 

Zhang R, Xiao K, Gu Y, Liu H, Sun X. Whole genome identification of potential G-quadruplexes and analysis of the G-quadruplex binding domain for SARS-CoV-2. Front Genet. 2020;11:587829.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guédin A, Gros J, Alberti P, Mergny J-L. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 2010;38:7858–68.

Article  PubMed  PubMed Central  Google Scholar 

Deng H, Gong B, Yang Z, Li Z, Zhou H, Zhang Y, et al. Intensive distribution of G2-quaduplexes in the pseudorabies virus genome and their sensitivity to cations and G-quadruplex ligands. Molecules. 2019;24:774.

Article  PubMed  PubMed Central  Google Scholar 

Bartas M, Brázda V, Bohálová N, Cantara A, Volná A, Stachurová T, et al. In-depth bioinformatic analyses of nidovirales including human SARS-CoV-2, SARS-CoV, MERS-CoV viruses suggest important roles of non-canonical nucleic acid structures in their lifecycles. Front Microbiol. 2020;11:1583.

Article  PubMed  PubMed Central  Google Scholar 

Nicoludis JM, Miller ST, Jeffrey PD, Barrett SP, Rablen PR, Lawton TJ, et al. Optimized end-stacking provides specificity of N-methyl mesoporphyrin IX for human telomeric G-quadruplex DNA. J Am Chem Soc. 2012;134:20446–56.

Article  CAS  PubMed  Google Scholar 

Kim MY, Gleason-Guzman M, Izbicka E, Nishioka D, Hurley LH. The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures. Cancer Res. 2003;63:3247–56.

CAS 

留言 (0)

沒有登入
gif