Kazmierczak KM, et al. Epidemiology of Carbapenem Resistance determinants identified in Meropenem-Nonsusceptible Enterobacterales Collected as Part of a Global Surveillance Program, 2012 to 2017. Antimicrob Agents Chemother. 2021;65(7):e0200020.
Sridhar S, et al. Antimicrobial-resistant bacteria in international travelers. Curr Opin Infect Dis; 2021.
Sandfort M et al. Increase in NDM-1 and NDM-1/OXA-48-producing Klebsiella pneumoniae in Germany associated with the war in Ukraine, 2022. Euro Surveill, 2022. 27(50).
Dadgostar P. Antimicrobial Resistance: implications and costs. Infect Drug Resist. 2019;12:3903–10.
Article PubMed PubMed Central Google Scholar
Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980;289(1036):321–31.
Cercenado E, et al. In vitro activity of cefiderocol and comparators against isolates of Gram-negative bacterial pathogens from a range of infection sources: SIDEROWT2014-2018 studies in Spain. J Glob Antimicrob Resist. 2021;26:292–300.
Kristof K, et al. In vitro activity of ceftazidime-avibactam and comparators against Enterobacterales and Pseudomonas aeruginosa isolates from Central Europe and Israel, 2014–2017 and 2018. Diagn Microbiol Infect Dis. 2021;101(1):115420.
Santos A, et al. What are the advantages of living in a community? A microbial biofilm perspective! Mem Inst Oswaldo Cruz. 2018;113(9):e180212.
Article PubMed PubMed Central Google Scholar
Pang Z, et al. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177–92.
Tacconelli E, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–27.
Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–8.
Breidenstein EB, de la Fuente-Nunez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011;19(8):419–26.
Codjoe FS, Donkor ES. Carbapenem resistance: Rev Med Sci (Basel), 2017. 6(1).
Tenover FC, Nicolau DP, Gill CM. Carbapenemase-producing Pseudomonas aeruginosa -an emerging challenge. Emerg Microbes Infect. 2022;11(1):811–4.
Article PubMed PubMed Central Google Scholar
Bebrone C, et al. Current challenges in antimicrobial chemotherapy: focus on ss-lactamase inhibition. Drugs. 2010;70(6):651–79.
Levasseur P, et al. In vitro antibacterial activity of the ceftazidime-avibactam combination against enterobacteriaceae, including strains with well-characterized beta-lactamases. Antimicrob Agents Chemother. 2015;59(4):1931–4.
Article PubMed PubMed Central Google Scholar
Ehmann DE, et al. Kinetics of avibactam inhibition against Class A, C, and D beta-lactamases. J Biol Chem. 2013;288(39):27960–71.
Article PubMed PubMed Central Google Scholar
Matesanz M, Mensa J. Ceftazidime-Avibactam. Rev Esp Quimioter. 2021;34(Suppl1):38–40.
Article PubMed PubMed Central Google Scholar
Sharma R, Park TE, Moy S. Ceftazidime-Avibactam: a novel Cephalosporin/beta-Lactamase inhibitor combination for the treatment of resistant gram-negative organisms. Clin Ther. 2016;38(3):431–44.
Rawson TM, et al. A practical laboratory method to determine ceftazidime-avibactam-aztreonam synergy in patients with New Delhi metallo-beta-lactamase (NDM)-producing enterobacterales infection. J Glob Antimicrob Resist. 2022;29:558–62.
Intra J et al. Antimicrobial resistance patterns of Enterobacter cloacae and Klebsiella aerogenes strains isolated from clinical specimens: a twenty-year Surveillance Study. Antibiot (Basel), 2023. 12(4).
Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010;23(1):160–201.
Article PubMed PubMed Central Google Scholar
van Duin D, Bonomo RA. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: second-generation beta-Lactam/beta-Lactamase inhibitor combinations. Clin Infect Dis. 2016;63(2):234–41.
Article PubMed PubMed Central Google Scholar
Karlowsky JA et al. In Vitro Activity of Aztreonam-Avibactam against Enterobacteriaceae and Pseudomonas aeruginosa isolated by Clinical Laboratories in 40 countries from 2012 to 2015. Antimicrob Agents Chemother, 2017. 61(9).
Masuda N, et al. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2000;44(12):3322–7.
Article PubMed PubMed Central Google Scholar
Falcone M, et al. Efficacy of Ceftazidime-Avibactam Plus Aztreonam in patients with bloodstream infections caused by Metallo-beta-lactamase-producing enterobacterales. Clin Infect Dis. 2021;72(11):1871–8.
Pelaez Bejarano A, et al. Successful treatment of Verona integron-encoded metallo-beta-lactamase-producing Klebsiella pneumoniae infection using the combination of ceftazidime/avibactam and aztreonam. Eur J Hosp Pharm. 2022;29(2):113–5.
Gonzalez MD, et al. Susceptibility of ceftolozane-tazobactam and ceftazidime-avibactam against a Collection of beta-lactam-resistant gram-negative Bacteria. Ann Lab Med. 2017;37(2):174–6.
Humphries RM et al. Activity of ceftolozane-tazobactam and ceftazidime-avibactam against Beta-lactam-resistant Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother, 2017. 61(12).
Lupia T, et al. New cephalosporins for the treatment of pneumonia in internal medicine wards. J Thorac Dis. 2020;12(7):3747–63.
Article PubMed PubMed Central Google Scholar
Sader HS et al. Antimicrobial activity of Ceftazidime-Avibactam tested against Multidrug-Resistant Enterobacteriaceae and Pseudomonas aeruginosa isolates from U.S. Medical Centers, 2013 to 2016. Antimicrob Agents Chemother, 2017. 61(11).
Schaumburg F, et al. Comparison of methods to analyse susceptibility of German MDR/XDR Pseudomonas aeruginosa to ceftazidime/avibactam. Int J Antimicrob Agents. 2019;54(2):255–60.
Kazmierczak KM, et al. In vitro activity of ceftazidime/avibactam against isolates of Pseudomonas aeruginosa collected in European countries: INFORM global surveillance 2012-15. J Antimicrob Chemother. 2018;73(10):2777–81.
Wang Y, et al. Resistance to ceftazidime-avibactam and underlying mechanisms. J Glob Antimicrob Resist. 2020;22:18–27.
Chauzy A, et al. Semimechanistic Pharmacodynamic modeling of Aztreonam-Avibactam combination to Understand its antimicrobial activity against Multidrug-Resistant Gram-negative Bacteria. CPT Pharmacometrics Syst Pharmacol. 2019;8(11):815–24.
Article PubMed PubMed Central Google Scholar
Livermore DM, et al. Characterization of beta-lactamase and porin mutants of Enterobacteriaceae selected with ceftaroline + avibactam (NXL104). J Antimicrob Chemother. 2012;67(6):1354–8.
Sy S, et al. Prediction of in vivo and in vitro infection model results using a semimechanistic model of avibactam and aztreonam combination against multidrug resistant organisms. CPT Pharmacometrics Syst Pharmacol. 2017;6(3):197–207.
Article PubMed PubMed Central Google Scholar
Atkin SD, et al. Multidrug-resistant Pseudomonas aeruginosa from sputum of patients with cystic fibrosis demonstrates a high rate of susceptibility to ceftazidime-avibactam. Infect Drug Resist. 2018;11:1499–510.
Article PubMed PubMed Central Google Scholar
Zamudio R, et al. Phylogenetic analysis of resistance to ceftazidime/avibactam, ceftolozane/tazobactam and carbapenems in piperacillin/tazobactam-resistant Pseudomonas aeruginosa from cystic fibrosis patients. Int J Antimicrob Agents. 2019;53(6):774–80.
Davido B et al. Ceftazidime-Avibactam and Aztreonam, an interesting strategy to overcome beta-lactam resistance conferred by Metallo-beta-lactamases in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother, 2017. 61(9).
留言 (0)