Dietary zinc deficiency promotes Acinetobacter baumannii lung infection via IL-13 in mice

Ikuta, K. S. et al. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 400, 2221–2248 (2022).

Article  Google Scholar 

Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

Article  CAS  Google Scholar 

Koulenti, D., Tsigou, E. & Rello, J. Nosocomial pneumonia in 27 ICUs in Europe: perspectives from the EU-VAP/CAP study. Eur. J. Clin. Microbiol. Infect. Dis. 36, 1999–2006 (2017).

Article  CAS  PubMed  Google Scholar 

Mohd Sazlly Lim, S., Zainal Abidin, A., Liew, S. M., Roberts, J. A. & Sime, F. B. The global prevalence of multidrug-resistance among Acinetobacter baumannii causing hospital-acquired and ventilator-associated pneumonia and its associated mortality: a systematic review and meta-analysis. J. Infect. 79, 593–600 (2019).

Article  CAS  PubMed  Google Scholar 

Wong, D. et al. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenge. Clin. Microbiol. Rev. 30, 409–447 (2017).

Article  CAS  PubMed  Google Scholar 

Dijkshoorn, L., Nemec, A. & Seifert, H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat. Rev. Microbiol. 5, 939–951 (2007).

Article  CAS  PubMed  Google Scholar 

Falagas, M. E., Karveli, E. A., Siempos, I. & Vardakas, K. Z. Acinetobacter infections: a growing threat for critically ill patients. Epidemiol. Infect. 136, 1009–1019 (2008).

Article  CAS  PubMed  Google Scholar 

Sengstock, D. M. et al. Multidrug‐resistant Acinetobacter baumannii: an emerging pathogen among older adults in community hospitals and nursing homes. Clin. Infect. Dis. 50, 1611–1616 (2010).

Article  CAS  PubMed  Google Scholar 

Anstey, N. M. et al. Community-acquired bacteremic Acinetobacter pneumonia in tropical Australia is caused by diverse strains of Acinetobacter baumannii, with carriage in the throat in at-risk groups. J. Clin. Microbiol. 40, 685–686 (2002).

Article  PubMed  PubMed Central  Google Scholar 

Anstey, N. M., Currie, B. J. & Withnall, K. M. Community-acquired Acinetobacter pneumonia in the Northern Territory of Australia. Clin. Infect. Dis. 14, 83–91 (1992).

Article  CAS  PubMed  Google Scholar 

Falagas, M. E., Karveli, E. A., Kelesidis, I. & Kelesidis, T. Community-acquired Acinetobacter infections. Eur. J. Clin. Microbiol. Infect. Dis. 26, 857–868 (2007).

Article  CAS  PubMed  Google Scholar 

Sharma, A., Shariff, M., Thukral, S. S. & Shah, A. Chronic community-acquired Acinetobacter pneumonia that responded slowly to rifampicin in the anti-tuberculous regime. J. Infect. 51, e149–e152 (2005).

Article  PubMed  Google Scholar 

Fraker, P. J., King, L. E., Laakko, T. & Vollmer, T. L. The dynamic link between the integrity of the immune system and zinc status. J. Nutr. 130, 1399S–1406S (2000).

Article  CAS  PubMed  Google Scholar 

Fraker, P. J. & King, L. E. Reprogramming of the immune system during zinc deficiency. Annu. Rev. Nutr. 24, 277–298 (2004).

Article  CAS  PubMed  Google Scholar 

Haase, H. & Rink, L. Multiple impacts of zinc on immune function. Metallomics 6, 1175–1180 (2014).

Article  CAS  PubMed  Google Scholar 

Rink, L. & Haase, H. Zinc homeostasis and immunity. Trends Immunol. 28, 1–4 (2007).

Article  CAS  PubMed  Google Scholar 

Girodon, F. et al. Impact of trace elements and vitamin supplementation on immunity and infections in institutionalized elderly patients: a randomized controlled trial. MIN. VIT. AOX. geriatric network. Arch. Intern. Med. 159, 748–754 (1999).

Article  CAS  PubMed  Google Scholar 

Girodon, F. et al. Effect of micronutrient supplementation on infection in institutionalized elderly subjects: a controlled trial. Ann. Nutr. Metab. 41, 98–107 (1997).

Article  CAS  PubMed  Google Scholar 

Prasad, A. S. et al. Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress. Am. J. Clin. Nutr. 85, 837–844 (2007).

Article  CAS  PubMed  Google Scholar 

Meydani, S. N. et al. Serum zinc and pneumonia in nursing home elderly. Am. J. Clin. Nutr. 86, 1167–1173 (2007).

Article  CAS  PubMed  Google Scholar 

Barnett, J. B., Hamer, D. H. & Meydani, S. N. Low zinc status: a new risk factor for pneumonia in the elderly? Nutr. Rev. 68, 30–37 (2010).

Article  PubMed  Google Scholar 

Prasad, A. S. et al. Zinc deficiency in elderly patients. Nutrition 9, 218–224 (1993).

CAS  PubMed  Google Scholar 

Wakimoto, P. & Block, G. Dietary intake, dietary patterns, and changes with age: an epidemiological perspective. J. Gerentol. A 56, 65–80 (2001).

Article  Google Scholar 

Kiabi, F., Alipour, A., Darvishi-Khezri, H., Aliasgharian, A. & Zeydi, A. Zinc supplementation in adult mechanically ventilated trauma patients is associated with decreased occurrence of ventilator-associated pneumonia: a secondary analysis of a prospective, observational study. Indian J. Crit. Care Med. 21, 34–39 (2017).

Article  CAS  Google Scholar 

Boudreault, F. et al. Zinc deficiency primes the lung for ventilator-induced injury. JCI Insight 2, e86507 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Palmer, L. D. & Skaar, E. P. Transition metals and virulence in bacteria. Annu. Rev. Genet. 50, 67–91 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zackular, J. P. et al. Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection. Nat. Med. 22, 1330–1334 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Juttukonda, L. J. et al. Dietary Manganese Promotes Staphylococcal Infection of the Heart. Cell Host Microbe 22, 531–542.e8 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lopez, C. A. & Skaar, E. P. The impact of dietary transition metals on host–bacterial interactions. Cell Host Microbe 23, 737–748 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bauckman, K. A. et al. Dietary restriction of iron availability attenuates UPEC pathogenesis in a mouse model of urinary tract infection. Am. J. Phys. 316, F814–F822 (2019).

CAS  Google Scholar 

Monteith, A. J., Miller, J. M., Beavers, W. N., Juttukonda, L. J. & Skaar, E. P. Increased dietary manganese impairs neutrophil extracellular trap formation rendering neutrophils ineffective at combating Staphylococcus aureus. Infect. Immun. 90, e0068521 (2022).

Article  PubMed  Google Scholar 

Nairz, M. et al. Genetic and dietary iron overload differentially affect the course of Salmonella Typhimurium infection. Front. Cell Infect. Microbiol. 7, 110 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Noto, J. M. et al. Iron deficiency accelerates Helicobacter pylori-induced carcinogenesis in rodents and humans. J. Clin. Invest. 123, 479–492 (2013).

Article  CAS 

留言 (0)

沒有登入
gif