Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
Article CAS PubMed Google Scholar
Flombaum, P. et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).
Article CAS PubMed PubMed Central Google Scholar
Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).
Article CAS PubMed Google Scholar
Seymour, J. R., Ahmed, T., Durham, W. M. & Stocker, R. Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquat. Microb. Ecol. 59, 161–168 (2010).
Raina, J.-B. et al. Chemotaxis increases metabolic exchanges between marine picophytoplankton and heterotrophic bacteria. Nat. Microbiol. 8, 510–521 (2023).
Sharma, A. K. et al. Distinct dissolved organic matter sources induce rapid transcriptional responses in coexisting populations of Prochlorococcus, Pelagibacter and the OM60 clade. Environ. Microbiol. 16, 2815–2830 (2014).
Article CAS PubMed Google Scholar
Eigemann, F. et al. Phytoplankton exudates provide full nutrition to a subset of accompanying heterotrophic bacteria via carbon, nitrogen and phosphorus allocation. Environ. Microbiol. 24, 2467–2483 (2022).
Article CAS PubMed Google Scholar
Calfee, B. C., Glasgo, L. D. & Zinser, E. R. Prochlorococcus exudate stimulates heterotrophic bacterial competition with rival phytoplankton for available nitrogen. mBio 13, e0257121 (2022).
Article CAS PubMed PubMed Central Google Scholar
Fuhrman, J. A. & Suttle, C. A. Viruses in marine planktonic systems. Oceanography 6, 51–63 (1993).
Proctor, L. M. & Fuhrman, J. A. Viral mortality of marine bacteria and cyanobacteria. Nature 343, 60–62 (1990).
Breitbart, M. Marine viruses: truth or dare. Annu. Rev. Mar. Sci. 4, 425–448 (2012).
Mruwat, N. et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 15, 41–54 (2021).
Article CAS PubMed Google Scholar
Carlson, M. C. G. et al. Viruses affect picocyanobacterial abundance and biogeography in the North Pacific Ocean. Nat. Microbiol. 7, 570–580 (2022).
Article CAS PubMed PubMed Central Google Scholar
Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. USA 113, 1576–1581 (2016).
Article CAS PubMed PubMed Central Google Scholar
Seymour, J. R., Simó, R., Ahmed, T. & Stocker, R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329, 342–345 (2010).
Article CAS PubMed Google Scholar
Rosenwasser, S., Ziv, C., van Creveld, S. G. & Vardi, A. Virocell metabolism: metabolic innovations during host–virus interactions in the ocean. Trends Microbiol. 24, 821–832 (2016).
Article CAS PubMed Google Scholar
Ankrah, N. Y. D. et al. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J. 8, 1089–1100 (2014).
Article CAS PubMed Google Scholar
Sheik, A. R. et al. Responses of the coastal bacterial community to viral infection of the algae Phaeocystis globosa. ISME J. 8, 212–225 (2014).
Article CAS PubMed Google Scholar
De Smet, J. et al. High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection. ISME J. 10, 1823–1835 (2016).
Article PubMed PubMed Central Google Scholar
Howard-Varona, C. et al. Protist impacts on marine cyanovirocell metabolism. ISME Commun. 2, 94 (2022).
Article PubMed PubMed Central Google Scholar
Middelboe, M., Jorgensen, N. & Kroer, N. Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton. Appl. Environ. Microbiol. 62, 1991–1997 (1996).
Article CAS PubMed PubMed Central Google Scholar
Middelboe, M. et al. Virus-induced transfer of organic carbon between marine bacteria in a model community. Aquat. Microb. Ecol. 33, 1–10 (2003).
Xie, L., Altindal, T., Chattopadhyay, S. & Wu, X. L. Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis. Proc. Natl Acad. Sci. USA 108, 2246–2251 (2011).
Article CAS PubMed PubMed Central Google Scholar
Altindal, T., Chattopadhyay, S. & Wu, X. L. Bacterial chemotaxis in an optical trap. PLoS ONE 6, e18231 (2011).
Article CAS PubMed PubMed Central Google Scholar
Stocker, R. Reverse and flick: hybrid locomotion in bacteria. Proc. Natl Acad. Sci. USA 108, 2635–2636 (2011).
Article CAS PubMed PubMed Central Google Scholar
Baker-Austin, C. et al. Vibrio spp. infections. Nat. Rev. Dis. Primers 4, 1–19 (2018).
Stehnach, M. R., Waisbord, N., Walkama, D. M. & Guasto, J. S. Viscophobic turning dictates microalgae transport in viscosity gradients. Nat. Phys. 17, 926–930 (2021).
Stehnach, M. R., Henshaw, R. J., Floge, S. A. & Guasto, J. S. Multiplexed microfluidic screening of bacterial chemotaxis. eLife 12, e85348 (2023).
Article CAS PubMed PubMed Central Google Scholar
Stocker, R. et al. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl Acad. Sci. USA 105, 4209–4214 (2008).
Article CAS PubMed PubMed Central Google Scholar
Fuhrman, J. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. et al.) 361–383 (Springer, 1992).
Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. BioScience 49, 781–788 (1999).
Lønborg, C., Middelboe, M. & Brussaard, C. P. Viral lysis of Micromonas pusilla: impacts on dissolved organic matter production and composition. Biogeochemistry 116, 231–240 (2013).
Stocker, R. The 100 μm length scale in the microbial ocean. Aquat. Microb. Ecol. 76, 189–194 (2015).
Homma, M. et al. Chemotactic responses to an attractant and a repellent by the polar and lateral flagellar systems of Vibrio alginolyticus. Microbiology 142, 2777–2783 (1996).
Article CAS PubMed Google Scholar
Booker, S. J. & Lloyd, C. T. Twenty years of radical SAM! The genesis of the superfamily. ACS Bio Med Chem Au 2, 538–547 (2022).
留言 (0)