Metabolites from intact phage-infected Synechococcus chemotactically attract heterotrophic marine bacteria

Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

Article  CAS  PubMed  Google Scholar 

Flombaum, P. et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).

Article  CAS  PubMed  Google Scholar 

Seymour, J. R., Ahmed, T., Durham, W. M. & Stocker, R. Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquat. Microb. Ecol. 59, 161–168 (2010).

Article  Google Scholar 

Raina, J.-B. et al. Chemotaxis increases metabolic exchanges between marine picophytoplankton and heterotrophic bacteria. Nat. Microbiol. 8, 510–521 (2023).

Sharma, A. K. et al. Distinct dissolved organic matter sources induce rapid transcriptional responses in coexisting populations of Prochlorococcus, Pelagibacter and the OM60 clade. Environ. Microbiol. 16, 2815–2830 (2014).

Article  CAS  PubMed  Google Scholar 

Eigemann, F. et al. Phytoplankton exudates provide full nutrition to a subset of accompanying heterotrophic bacteria via carbon, nitrogen and phosphorus allocation. Environ. Microbiol. 24, 2467–2483 (2022).

Article  CAS  PubMed  Google Scholar 

Calfee, B. C., Glasgo, L. D. & Zinser, E. R. Prochlorococcus exudate stimulates heterotrophic bacterial competition with rival phytoplankton for available nitrogen. mBio 13, e0257121 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuhrman, J. A. & Suttle, C. A. Viruses in marine planktonic systems. Oceanography 6, 51–63 (1993).

Article  Google Scholar 

Proctor, L. M. & Fuhrman, J. A. Viral mortality of marine bacteria and cyanobacteria. Nature 343, 60–62 (1990).

Article  Google Scholar 

Breitbart, M. Marine viruses: truth or dare. Annu. Rev. Mar. Sci. 4, 425–448 (2012).

Article  Google Scholar 

Mruwat, N. et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 15, 41–54 (2021).

Article  CAS  PubMed  Google Scholar 

Carlson, M. C. G. et al. Viruses affect picocyanobacterial abundance and biogeography in the North Pacific Ocean. Nat. Microbiol. 7, 570–580 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. USA 113, 1576–1581 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seymour, J. R., Simó, R., Ahmed, T. & Stocker, R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329, 342–345 (2010).

Article  CAS  PubMed  Google Scholar 

Rosenwasser, S., Ziv, C., van Creveld, S. G. & Vardi, A. Virocell metabolism: metabolic innovations during host–virus interactions in the ocean. Trends Microbiol. 24, 821–832 (2016).

Article  CAS  PubMed  Google Scholar 

Ankrah, N. Y. D. et al. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J. 8, 1089–1100 (2014).

Article  CAS  PubMed  Google Scholar 

Sheik, A. R. et al. Responses of the coastal bacterial community to viral infection of the algae Phaeocystis globosa. ISME J. 8, 212–225 (2014).

Article  CAS  PubMed  Google Scholar 

De Smet, J. et al. High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection. ISME J. 10, 1823–1835 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Howard-Varona, C. et al. Protist impacts on marine cyanovirocell metabolism. ISME Commun. 2, 94 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Middelboe, M., Jorgensen, N. & Kroer, N. Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton. Appl. Environ. Microbiol. 62, 1991–1997 (1996).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Middelboe, M. et al. Virus-induced transfer of organic carbon between marine bacteria in a model community. Aquat. Microb. Ecol. 33, 1–10 (2003).

Article  Google Scholar 

Xie, L., Altindal, T., Chattopadhyay, S. & Wu, X. L. Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis. Proc. Natl Acad. Sci. USA 108, 2246–2251 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altindal, T., Chattopadhyay, S. & Wu, X. L. Bacterial chemotaxis in an optical trap. PLoS ONE 6, e18231 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stocker, R. Reverse and flick: hybrid locomotion in bacteria. Proc. Natl Acad. Sci. USA 108, 2635–2636 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baker-Austin, C. et al. Vibrio spp. infections. Nat. Rev. Dis. Primers 4, 1–19 (2018).

Article  Google Scholar 

Stehnach, M. R., Waisbord, N., Walkama, D. M. & Guasto, J. S. Viscophobic turning dictates microalgae transport in viscosity gradients. Nat. Phys. 17, 926–930 (2021).

Article  CAS  Google Scholar 

Stehnach, M. R., Henshaw, R. J., Floge, S. A. & Guasto, J. S. Multiplexed microfluidic screening of bacterial chemotaxis. eLife 12, e85348 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stocker, R. et al. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl Acad. Sci. USA 105, 4209–4214 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuhrman, J. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. et al.) 361–383 (Springer, 1992).

Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. BioScience 49, 781–788 (1999).

Article  Google Scholar 

Lønborg, C., Middelboe, M. & Brussaard, C. P. Viral lysis of Micromonas pusilla: impacts on dissolved organic matter production and composition. Biogeochemistry 116, 231–240 (2013).

Article  Google Scholar 

Stocker, R. The 100 μm length scale in the microbial ocean. Aquat. Microb. Ecol. 76, 189–194 (2015).

Article  Google Scholar 

Homma, M. et al. Chemotactic responses to an attractant and a repellent by the polar and lateral flagellar systems of Vibrio alginolyticus. Microbiology 142, 2777–2783 (1996).

Article  CAS  PubMed  Google Scholar 

Booker, S. J. & Lloyd, C. T. Twenty years of radical SAM! The genesis of the superfamily. ACS Bio Med Chem Au 2, 538–547 (2022).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif