Expanding the diversity of origin of transfer-containing sequences in mobilizable plasmids

Arnold, B. J., Huang, I.-T. & Hanage, W. P. Horizontal gene transfer and adaptive evolution in bacteria. Nat. Rev. Microbiol. 20, 206–218 (2022).

Article  CAS  PubMed  Google Scholar 

Redondo-Salvo, S. et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat. Commun. 11, 3602 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Smalla, K., Jechalke, S. & Top, E. M. Plasmid detection, characterization, and ecology. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.plas-0038-2014 (2015).

Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3, 722–732 (2005).

Article  CAS  PubMed  Google Scholar 

Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P. C. & de la Cruz, F. Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74, 434–452 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Derbyshire, K. M. & Willetts, N. S. Mobilization of the non-conjugative plasmid RSF1010: a genetic analysis of its origin of transfer. Mol. Gen. Genet. 206, 154–160 (1987).

Article  CAS  PubMed  Google Scholar 

Finnegan, J. & Sherratt, D. Plasmid ColE1 conjugal mobility: the nature of bom, a region required in cis for transfer. Mol. Gen. Genet. 185, 344–351 (1982).

Article  CAS  PubMed  Google Scholar 

Furuya, N., Nisioka, T. & Komano, T. Nucleotide sequence and functions of the oriT operon in IncI1 plasmid R64. J. Bacteriol. 173, 2231–2237 (1991).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carraro, N. et al. Development of pVCR94ΔX from Vibrio cholerae, a prototype for studying multidrug resistant IncA/C conjugative plasmids. Front. Microbiol. 5, 44 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Traxler, B. A. & Minkley, E. G. Evidence that DNA helicase I and oriT site-specific nicking are both functions of the F TraI protein. J. Mol. Biol. 204, 205–209 (1988).

Article  CAS  PubMed  Google Scholar 

Nonaka, L. et al. Novel conjugative transferable multiple drug resistance plasmid pAQU1 from Photobacterium damselae subsp. damselae isolated from marine aquaculture environment. Microbes Environ. 27, 263–272 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Alonso-del Valle, A. et al. Antimicrobial resistance level and conjugation permissiveness shape plasmid distribution in clinical enterobacteria. Proc. Natl Acad. Sci. USA 120, e2314135120 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brockhurst, M. A. & Harrison, E. Ecological and evolutionary solutions to the plasmid paradox. Trends Microbiol. 30, 534–543 (2022).

Article  CAS  PubMed  Google Scholar 

Bielak, E. et al. Investigation of diversity of plasmids carrying the blaTEM-52 gene. J. Antimicrob. Chemother. 67, 786 (2012).

Article  CAS  Google Scholar 

Rozwandowicz, M. et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 73, 1121–1137 (2018).

Article  CAS  PubMed  Google Scholar 

Ramsay, J. P. & Firth, N. Diverse mobilization strategies facilitate transfer of non-conjugative mobile genetic elements. Curr. Opin. Microbiol. 38, 1–9 (2017).

Article  CAS  PubMed  Google Scholar 

Pfeifer, E., Moura de Sousa, J. A., Touchon, M. & Rocha, E. P. C. Bacteria have numerous distinctive groups of phage–plasmids with conserved phage and variable plasmid gene repertoires. Nucleic Acids Res. 49, 2655–2673 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, C. A., Thomas, J. & Grossman, A. D. The Bacillus subtilis conjugative transposon ICEBs1 mobilizes plasmids lacking dedicated mobilization functions. J. Bacteriol. 194, 3165–3172 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blackwell, G. A. & Hall, R. M. Mobilisation of a small Acinetobacter plasmid carrying an oriT transfer origin by conjugative RepAci6 plasmids. Plasmid 103, 36–44 (2019).

Article  CAS  PubMed  Google Scholar 

Moran, R. A. & Hall, R. M. Analysis of pCERC7, a small antibiotic resistance plasmid from a commensal ST131 Escherichia coli, defines a diverse group of plasmids that include various segments adjacent to a multimer resolution site and encode the same NikA relaxase accessory protein enabling mobilisation. Plasmid 89, 42–48 (2017).

Article  CAS  PubMed  Google Scholar 

Werbowy, O. & Kaczorowski, T. Plasmid pEC156, a naturally occurring Escherichia coli genetic element that carries genes of the EcoVIII restriction-modification system, is mobilizable among Enterobacteria. PLoS ONE 11, e0148355 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Ares-Arroyo, M., Coluzzi, C. & Rocha, E. P. C. Origins of transfer establish networks of functional dependencies for plasmid transfer by conjugation. Nucleic Acids Res. 51, 3001–3016 (2023).

Article  CAS  PubMed  Google Scholar 

Ramsay, J. P. et al. An updated view of plasmid conjugation and mobilization in Staphylococcus. Mob. Genet. Elem. 6, e1208317 (2016).

Article  Google Scholar 

Ferrières, L. et al. Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J. Bacteriol. 192, 6418–6427 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Coluzzi, C., Garcillán-Barcia, M. P., de la Cruz, F. & Rocha, E. P. C. Evolution of plasmid mobility: origin and fate of conjugative and nonconjugative plasmids. Mol. Biol. Evol. 39, msac115 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ares-Arroyo, M. et al. PCR-based analysis of ColE1 plasmids in clinical isolates and metagenomic samples reveals their importance as gene capture platforms. Front. Microbiol. 9, 469 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, J. et al. Mobilizable plasmids drive the spread of antimicrobial resistance genes and virulence genes in Klebsiella pneumoniae. Genome Med. 15, 106 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Zrimec, J. & Lapanje, A. DNA structure at the plasmid origin-of-transfer indicates its potential transfer range. Sci. Rep. 8, 1820 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Loftie-Eaton, W. & Rawlings, D. E. Diversity, biology and evolution of IncQ-family plasmids. Plasmid 67, 15–34 (2012).

Article  CAS  PubMed  Google Scholar 

Garcillán-Barcia, M. P., Cuartas-Lanza, R., Cuevas, A. & de la Cruz, F. Cis-acting relaxases guarantee independent mobilization of MOBQ4 plasmids. Front. Microbiol. 10, 2557 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

Article  CAS  Google Scholar 

Hanke, D. M., Wang, Y. & Dagan, T. Pseudogenes in plasmid genomes reveal past transitions in plasmid mobility. Nucleic Acids Res. 52, 7049–7062 (2024).

Article 

留言 (0)

沒有登入
gif