Arnold, B. J., Huang, I.-T. & Hanage, W. P. Horizontal gene transfer and adaptive evolution in bacteria. Nat. Rev. Microbiol. 20, 206–218 (2022).
Article CAS PubMed Google Scholar
Redondo-Salvo, S. et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat. Commun. 11, 3602 (2020).
Article PubMed PubMed Central Google Scholar
Smalla, K., Jechalke, S. & Top, E. M. Plasmid detection, characterization, and ecology. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.plas-0038-2014 (2015).
Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3, 722–732 (2005).
Article CAS PubMed Google Scholar
Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P. C. & de la Cruz, F. Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74, 434–452 (2010).
Article CAS PubMed PubMed Central Google Scholar
Derbyshire, K. M. & Willetts, N. S. Mobilization of the non-conjugative plasmid RSF1010: a genetic analysis of its origin of transfer. Mol. Gen. Genet. 206, 154–160 (1987).
Article CAS PubMed Google Scholar
Finnegan, J. & Sherratt, D. Plasmid ColE1 conjugal mobility: the nature of bom, a region required in cis for transfer. Mol. Gen. Genet. 185, 344–351 (1982).
Article CAS PubMed Google Scholar
Furuya, N., Nisioka, T. & Komano, T. Nucleotide sequence and functions of the oriT operon in IncI1 plasmid R64. J. Bacteriol. 173, 2231–2237 (1991).
Article CAS PubMed PubMed Central Google Scholar
Carraro, N. et al. Development of pVCR94ΔX from Vibrio cholerae, a prototype for studying multidrug resistant IncA/C conjugative plasmids. Front. Microbiol. 5, 44 (2014).
Article PubMed PubMed Central Google Scholar
Traxler, B. A. & Minkley, E. G. Evidence that DNA helicase I and oriT site-specific nicking are both functions of the F TraI protein. J. Mol. Biol. 204, 205–209 (1988).
Article CAS PubMed Google Scholar
Nonaka, L. et al. Novel conjugative transferable multiple drug resistance plasmid pAQU1 from Photobacterium damselae subsp. damselae isolated from marine aquaculture environment. Microbes Environ. 27, 263–272 (2012).
Article PubMed PubMed Central Google Scholar
Alonso-del Valle, A. et al. Antimicrobial resistance level and conjugation permissiveness shape plasmid distribution in clinical enterobacteria. Proc. Natl Acad. Sci. USA 120, e2314135120 (2023).
Article CAS PubMed PubMed Central Google Scholar
Brockhurst, M. A. & Harrison, E. Ecological and evolutionary solutions to the plasmid paradox. Trends Microbiol. 30, 534–543 (2022).
Article CAS PubMed Google Scholar
Bielak, E. et al. Investigation of diversity of plasmids carrying the blaTEM-52 gene. J. Antimicrob. Chemother. 67, 786 (2012).
Rozwandowicz, M. et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 73, 1121–1137 (2018).
Article CAS PubMed Google Scholar
Ramsay, J. P. & Firth, N. Diverse mobilization strategies facilitate transfer of non-conjugative mobile genetic elements. Curr. Opin. Microbiol. 38, 1–9 (2017).
Article CAS PubMed Google Scholar
Pfeifer, E., Moura de Sousa, J. A., Touchon, M. & Rocha, E. P. C. Bacteria have numerous distinctive groups of phage–plasmids with conserved phage and variable plasmid gene repertoires. Nucleic Acids Res. 49, 2655–2673 (2021).
Article CAS PubMed PubMed Central Google Scholar
Lee, C. A., Thomas, J. & Grossman, A. D. The Bacillus subtilis conjugative transposon ICEBs1 mobilizes plasmids lacking dedicated mobilization functions. J. Bacteriol. 194, 3165–3172 (2012).
Article CAS PubMed PubMed Central Google Scholar
Blackwell, G. A. & Hall, R. M. Mobilisation of a small Acinetobacter plasmid carrying an oriT transfer origin by conjugative RepAci6 plasmids. Plasmid 103, 36–44 (2019).
Article CAS PubMed Google Scholar
Moran, R. A. & Hall, R. M. Analysis of pCERC7, a small antibiotic resistance plasmid from a commensal ST131 Escherichia coli, defines a diverse group of plasmids that include various segments adjacent to a multimer resolution site and encode the same NikA relaxase accessory protein enabling mobilisation. Plasmid 89, 42–48 (2017).
Article CAS PubMed Google Scholar
Werbowy, O. & Kaczorowski, T. Plasmid pEC156, a naturally occurring Escherichia coli genetic element that carries genes of the EcoVIII restriction-modification system, is mobilizable among Enterobacteria. PLoS ONE 11, e0148355 (2016).
Article PubMed PubMed Central Google Scholar
Ares-Arroyo, M., Coluzzi, C. & Rocha, E. P. C. Origins of transfer establish networks of functional dependencies for plasmid transfer by conjugation. Nucleic Acids Res. 51, 3001–3016 (2023).
Article CAS PubMed Google Scholar
Ramsay, J. P. et al. An updated view of plasmid conjugation and mobilization in Staphylococcus. Mob. Genet. Elem. 6, e1208317 (2016).
Ferrières, L. et al. Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J. Bacteriol. 192, 6418–6427 (2010).
Article PubMed PubMed Central Google Scholar
Coluzzi, C., Garcillán-Barcia, M. P., de la Cruz, F. & Rocha, E. P. C. Evolution of plasmid mobility: origin and fate of conjugative and nonconjugative plasmids. Mol. Biol. Evol. 39, msac115 (2022).
Article CAS PubMed PubMed Central Google Scholar
Ares-Arroyo, M. et al. PCR-based analysis of ColE1 plasmids in clinical isolates and metagenomic samples reveals their importance as gene capture platforms. Front. Microbiol. 9, 469 (2018).
Article PubMed PubMed Central Google Scholar
Zhang, J. et al. Mobilizable plasmids drive the spread of antimicrobial resistance genes and virulence genes in Klebsiella pneumoniae. Genome Med. 15, 106 (2023).
Article PubMed PubMed Central Google Scholar
Zrimec, J. & Lapanje, A. DNA structure at the plasmid origin-of-transfer indicates its potential transfer range. Sci. Rep. 8, 1820 (2018).
Article PubMed PubMed Central Google Scholar
Loftie-Eaton, W. & Rawlings, D. E. Diversity, biology and evolution of IncQ-family plasmids. Plasmid 67, 15–34 (2012).
Article CAS PubMed Google Scholar
Garcillán-Barcia, M. P., Cuartas-Lanza, R., Cuevas, A. & de la Cruz, F. Cis-acting relaxases guarantee independent mobilization of MOBQ4 plasmids. Front. Microbiol. 10, 2557 (2019).
Article PubMed PubMed Central Google Scholar
Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).
Hanke, D. M., Wang, Y. & Dagan, T. Pseudogenes in plasmid genomes reveal past transitions in plasmid mobility. Nucleic Acids Res. 52, 7049–7062 (2024).
留言 (0)